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Abstract

A coupled Toda equation and its related equation are derived from 3-coupled bilinear
equations. The corresponding Bäcklund transformation and nonlinear superposition
formula are presented for the 3-coupled bilinear equations. As an application of the
results, solition solutions are derived. Besides, starting from the bilinear BT, Lax
pairs for these two differential-difference systems are obtained.

1 Introduction

The search for new integrable equations is a difficult and challenging problem in soliton
theory. Recently, several new integrable lattices have been found (see, e.g. [1, 2, 3]) by
considering the following generalized bilinear equation

F (Dx, sinh(α1Dn), · · · , sinh(αlDn))f(n) · f(n) = 0
or coupled generalized bilinear equations

F1(Dx, Dz, sinh(α1Dn), · · · , sinh(αlDn))f(n) · f(n) = 0,
F2(Dx, Dz, sinh(α1Dn), · · · , sinh(αlDn))f(n) · f(n) = 0,

where F and Fi(i = 1, 2) are even order polynomials in Dx, Dz, sinh(α1Dn), · · · and
sinh(αlDn), and l is a given positive integer; the αi, i = 1, 2, · · · , l, are l different con-
stants, and

Fi(0, 0, · · · , 0) = 0.
Here the Hirota’s bilinear differential operator Dm

y Dk
t and the bilinear difference operator

exp(δDn) are defined by [4, 5, 6]

Dm
y Dk

t a · b ≡
(

∂

∂y
− ∂

∂y′

)m (
∂

∂t
− ∂

∂t′

)k

a(y, t)b(y′, t′)|y′=y,t′=t,
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exp(δDn)a(n) · b(n) ≡ exp
[
δ

(
∂

∂n
− ∂

∂n′

)]
a(n)b(n′)|n′=n = a(n+ δ)b(n− δ).

Now it is quite natural for us to search for new integrable systems by further considering
3-coupled generalized bilinear equations

F1(Dx, Dy, Dz, sinh(α1Dn), · · · , sinh(αlDn))f(n) · f(n) = 0, (1.1)
F2(Dx, Dy, Dz, sinh(α1Dn), · · · , sinh(αlDn))f(n) · f(n) = 0, (1.2)
F3(Dx, Dy, Dz, sinh(α1Dn), · · · , sinh(αlDn))f(n) · f(n) = 0. (1.3)

We could search for new integrable systems of the type (1.1)-(1.3) via the following steps.
Firstly, following [1], we seek bilinear forms F1f · f = 0, F2f · f = 0 and F3f · f =

0 individually by testing Bäcklund transformations. If a Bäcklund transformation for
F1f · f = 0 is compatible with Bäcklund transformations for F2f · f = 0, F3f · f = 0
respectively, then this coupled system is also integrable.
It is remarked that, generally speaking, the first step in this procedure is highly tech-

nical and involves a lot of guess work although description of the procedure looks simple.
Therefore the procedure is not algorithmic. However, for some simple cases, we do try
this procedure to seek new integrable candidates of the type (1.1)-(1.3). In practice, we
usually try to search for suitable bilinear equations Fif · f = 0, (i = 1, 2, 3) firstly by
testing 3-soliton or 4-soliton solutions, which is comparatively easier to do than by test-
ing Bäcklund transformations. If successful, then we further to derive as many bilinear
operator identities as we need. Finally we try to find out their possible Bäcklund trans-
formations.
The purpose of this paper is to report the following two new integrable differential-

difference systems found in this way:

uyyy(n+ 1) + uyyy(n) + 2(uy(n+ 1)− uy(n))(uyy(n+ 1)− uyy(n))

= eu(n+2)+u(n)−2u(n+1)

∫ y

(eu(n+3)+u(n+1)−2u(n+2) − eu(n+1)+u(n−1)−2u(n)) dy′

−eu(n+1)+u(n−1)−2u(n)

∫ y

(eu(n+2)+u(n)−2u(n+1) − eu(n)+u(n−2)−2u(n−1)) dy′,

(1.4)

Uxx(n) = V (n+ 1)W (n+ 1)eU(n+1) + V (n− 1)W (n− 1)eU(n−1)

−2V (n)W (n)eU(n) + eU(n+2)+U(n+1) − eU(n+1)+U(n)

−eU(n)+U(n−1) + eU(n−1)+U(n−2), (1.5)

Vx(n) =W (n+ 1)eU(n+1) −W (n− 1)eU(n−1), (1.6)

Wx(n) = V (n+ 1)eU(n+1) − V (n− 1)eU(n−1). (1.7)

In fact, these two new systems are obtained from the following 3-coupled bilinear system

(DxDy − 2Dze
Dn)f(n) · f(n) = 0, (1.8)

DyDzf(n) · f(n) = (2eDn − 2)f(n) · f(n), (1.9)

(Dxe
1
2
Dn −D2

ye
1
2
Dn)f(n) · f(n) = 0. (1.10)
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The y-flow (1.4) can be derived from the system (1.8)-(1.10) by the dependent variable
transformation

u(n) = ln f(n), (1.11)

where x and z appearing in (1.8)-(1.10) are viewed as two auxiliary variables. On the
other hand, the system (1.5)-(1.7) can be deduced from the system (1.8)-(1.10) by the
dependent variable transformation

U(n) = ln
f(n+ 1)f(n− 1)

f2(n)
, V (n) =

Dyf(n+ 1) · f(n− 1)
f(n+ 1)f(n− 1)

W (n) =
Dzf(n+ 1) · f(n− 1)
f(n+ 1)f(n− 1) (1.12)

where y and z appearing in (1.8)-(1.10) are viewed as two auxiliary variables. It is noted
that if V (n) =W (n) = 0, then the system (1.5)-(1.7) is reduced to the Toda lattice [7]

Qxx(n) = eQ(n+2)−Q(n) − eQ(n)−Q(n−2), (1.13)

where U(n) = Q(n)−Q(n− 1). Therefore we may call the system (1.5)-(1.7) the coupled
Toda equation. Besides, by the dependent variable transformation

u(n) = ln f(n), W (n) =
Dyf(n+ 1) · f(n− 1)

f(n+ 1)f(n− 1) , (1.14)

we can produce from the 3-coupled system (1.8)-(1.10) the z-flow:

uzzz(n+ 1)− uzzz(n− 1) + {[uz(n+ 1)
−uz(n− 1)][uz(n+ 1) + uz(n− 1)− 2uz(n)]}z

=W (n+ 1)eu(n+2)+u(n)−2u(n+1) +W (n− 1)eu(n)+u(n−2)−2u(n−1)

−2W (n)eu(n+1)+u(n−1)−2u(n), (1.15)

Wz(n) = eu(n+2)+u(n)−2u(n+1) − eu(n)+u(n−2)−2u(n−1) (1.16)

which is equivalent to the y-flow (1.4) under the transformation z → y.
The paper is organized as follows. In the next section, we will present a bilinear

Bäcklund transformation for equations (1.8)-(1.10). Then in section 3, we give a nonlinear
superposition formula. Soliton solutions of equations (1.8)-(1.10) are then found through
this formula. Section 4 is devoted to deriving Lax pairs for equation (1.4) and system
(1.5)-(1.7) respectively. The conclusion and discussion are given in section 5.

2 A Bäcklund transformation for the system (1.8)-(1.10)

In this section, we shall derive a Bäcklund transformation for the system (1.8)-(1.10). The
results obtained are:
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Proposition 1. The bilinear system (1.8)-(1.10) has the following Bäcklund transforma-
tion:

(Dz + λ−1e−Dn + µ)f(n) · g(n) = 0, (2.1)

(Dye
− 1

2
Dn − λe

1
2
Dn + γe−

1
2
Dn)f(n) · g(n) = 0, (2.2)(

1
λ
Dze

−Dn +
µ

λ
e−Dn −Dx + k

)
f(n) · g(n) = 0, (2.3)

(Dx −D2
y − 2γDy + θ)f(n) · g(n) = 0, (2.4)

where λ, µ, γ, k and θ are arbitrary constants.

Proof. Let f(n) be a solution of the system (1.8)-(1.10). What we need to prove is that
the function g(n) satisfying (2.1)-(2.4) is another solution of the system (1.8)-(1.10), i.e.,

P1 ≡ (DxDy − 2Dze
Dn)g(n) · g(n) = 0,

P2 ≡ (DyDz − 2eDn + 2)g(n) · g(n) = 0,
P3 ≡ (Dxe

1
2
Dn −D2

ye
1
2
Dn)g(n) · g(n) = 0.

In fact, in analogy with the proof already given in [8, 9], we know that Pi = 0(i = 1, 2)
can be proved by using equations (2.1)-(2.3). Thus it suffices to show that P3 = 0. In this
regard, by using (A1)-(A5), we have

−P3[e
1
2
Dnf(n) · f(n)] = [(Dxe

1
2
Dn −D2

ye
1
2
Dn)f(n) · f(n)][e 1

2
Dng(n) · g(n)]

−[(Dxe
1
2
Dn −D2

ye
1
2
Dn)g(n) · g(n)][e 1

2
Dnf(n) · f(n)]

= 2 sinh(
1
2
Dn)(Dxf(n) · g(n)) · f(n)g(n)

−Dy[(Dye
1
2
Dnf(n) · g(n)) · (e− 1

2
Dnf(n) · g(n))

−(e 1
2
Dnf(n) · g(n)) · (Dye

− 1
2
Dnf(n) · g(n))]

= 2 sinh(
1
2
Dn)(Dxf(n) · g(n)) · f(n)g(n)− 2 sinh(12Dn)(D2

yf(n) · g(n)) · f(n)g(n)
+2Dy(e

1
2
Dnf(n) · g(n)) · (Dye

− 1
2
Dnf(n) · g(n))

= 2 sinh(
1
2
Dn)[(Dx −D2

y)f(n) · g(n)] · f(n)g(n)
−2Dy(e

1
2
Dnf(n) · g(n)) · (γe− 1

2
Dnf(n) · g(n))

= 2 sinh(
1
2
Dn)[(Dx −D2

y − 2γDy)f(n) · g(n)] · f(n)g(n)
= 0.

Thus we have completed the proof of Proposition 1

Using (2.1)-(2.4), we can easily obtain the following solution from the trivial solution
f(n) = 1:

g(n) = 1 + exp(η),

where η = pn+λ2(1− e−2p)x+λ(1− e−p)y+λ−1(ep − 1)z+ η0 and µ = −λ−1, γ = λ, k =
λ−2, θ = 0 and λ = ±e

1
2
p.
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3 A nonlinear superposition formula

In the following, we shall simply denote, without confusion, f(n, x, y, z) = f(n) or f . The
results reached are given by

Proposition 2. Let f0 be a solution of eqns.(1.8)-(1.10). Suppose that fi(i = 1, 2) are
solutions of eqns.(1.8)-(1.10), which are related to f0 under the BT eqns.(2.1)-(2.4) with

parameters (λi, µi, γi, ki, θi), i.e., f0
(λi,µi,γi,ki,θi)−→ fi (i = 1, 2), λ1λ2 
= 0, fj 
= 0 (j =

0, 1, 2). Then f12 defined by

exp
(
−1
2
Dn

)
f0 · f12 = c

[
λ1 exp

(
−1
2
Dn

)
− λ2 exp

(
1
2
Dn

)]
f1 · f2 (3.1)

is a new solution related to f1 and f2 under the BT (2.1)-(2.4) with parameters (λ2, µ2, γ2,
k2, θ2), (λ1, µ1, γ1, k1, θ1) respectively. Here c is a nonzero constant.

This result can be proved by using Hirota’s bilinear operator identities. We omit the
details of the proof. Instead we are going to construct soliton solutions of the system
(1.8)-(1.10). Choose, for example, f0 = 1, c = 1/(λ1 − λ2). It can be easily verified that

✘✘✘✘✘✘✘✘✿(λ1, µ1, γ1, k1, θ1)

1

1 + eη1

�(λ2, µ2, γ2, k2, θ2) 1 + eη2 ✘✘✘✘✘✘✘✘✿

(λ1, µ1, γ1, k1, θ1)

�

(λ2, µ2, γ2, k2, θ2)

F12

where

F12 = 1 +
λ1e

−p1 − λ2

λ1 − λ2
eη1 +

λ1 − λ2e
−p2

λ1 − λ2
eη2 +

λ1e
−p1 − λ2e

−p2

λ1 − λ2
eη1+η2 , (3.2)

with

ηi = pin+ λ2
i (1− e−2pi)x+ λi(1− e−pi)y + λ−1

i (epi − 1)z + η0
i ,

µi = −λ−1
i , γi = λi, ki = λ−2

i , θi = 0, λi = ±e
1
2
pi .

In general, along this line, we can obtain multisoliton solutions for the system (1.8)-(1.10)
step by step. In fact, by using BT (2.1)-(2.4) and nonlinear superposition formula (3.1),
we can derive a determinantal representation of N-soliton solution given by∣∣∣∣∣∣∣∣∣

1 + eη1 (−∂y + λ1)(1 + eη1) · · · (−∂y + λ1)N−1(1 + eη1)
1 + eη2 (−∂y + λ2)(1 + eη2) · · · (−∂y + λ2)N−1(1 + eη2)
...

...
...

...
1 + eηN (−∂y + λN )(1 + eηN ) · · · (−∂y + λN )N−1(1 + eηN )

∣∣∣∣∣∣∣∣∣
.

4 Lax pairs for systems (1.4) and (1.5)-(1.7)

In this section, we shall derive Lax pairs for (1.4) and (1.5)-(1.7) respectively. Firstly, set

ψn = f(n)/g(n), u(n) = ln g(n).
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Then, from the bilinear BT (2.1)-(2.4) and after some calculations, we can obtain the
following Lax pair for (1.4):

ψn,y + (uy(n)− uy(n+ 1))ψn − λψn+1 + γψn = 0, (4.1)

λ2ψn+2 + λ(uy(n+ 2)− uy(n))ψn+1 + [uyy(n+ 1) + uyy(n)

+(uy(n)− uy(n+ 1))2 − θ − k − γ2]ψn − λ−1ψn−1e
u(n+1)+u(n−1)−2u(n)

×
∫ y

(eu(n)+u(n−2)−2u(n−1) − eu(n+2)+u(n)−2u(n+1)) dy′

+λ−2ψn−2e
u(n+1)−u(n)−u(n−1)+u(n−2) = 0. (4.2)

By some calculations, we can derive equation (1.4) from the compatibility condition of
(4.1) and (4.2).
Next, let

ψn = f(n)/g(n), U(n) = ln
g(n+ 1)g(n− 1)

g2(n)
,

V (n) =
Dyg(n+ 1) · g(n− 1)

g(n+ 1)g(n− 1) , W (n) =
Dzg(n+ 1) · g(n− 1)

g(n+ 1)g(n− 1) .

Then, from the bilinear BT (2.1)-(2.4) and after some calculations, we can obtain the
following Lax pair for (1.5)-(1.7):

ψn,x = λ2ψn+2 + λV (n+ 1)ψn+1

+ψn

{∫ x [
V (n+ 1)W (n+ 1)eU(n+1) − V (n)W (n)eU(n)

+eU(n+2)+U(n+1) − eU(n)+U(n−1)
]
dx′ − γ2 − θ

}
, (4.3)

λ2ψn+2 + λV (n+ 1)ψn+1 + ψn

{∫ x [
V (n+ 1)W (n+ 1)eU(n+1) − V (n)W (n)eU(n)

+eU(n+2)+U(n+1) − eU(n)+U(n−1)
]
dx′ − γ2 − θ − k

}

+λ−1W (n)eU(n)ψn−1 + λ−2eU(n)+U(n−1)ψn−2 = 0. (4.4)

5 Conclusion and discussions

Starting from 3-coupled bilinear equations, two new integrable differential-difference sys-
tems have been found. One of them is a coupled Toda equation. Based on Hirota’s bilinear
operator identities, we have established the corresponding Bäcklund transformation and
nonlinear superposition formula of the 3-coupled bilinear equations, consequently allow-
ing one to produce solition solutions of the systems under consideration. Furthermore,
Lax pairs for these two differential-difference systems are derived from the bilinear BT.
Besides, set

ψn = f(n)/g(n), u(n) = ln g(n), W (n) =
Dyg(n+ 1) · g(n− 1)

g(n+ 1)g(n− 1) .
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Then, from the bilinear BT (2.1)-(2.4) and after some calculations, we can also obtain the
following Lax pair for (1.15) and (1.16):

ψn,z + λ−1ψn−1e
u(n+1)+u(n−1)−2u(n) + µψn = 0, (5.1)

−λ2ψn+2 − λW (n+ 1)ψn+1 + [θ + k + γ2

+
∫ z

(W (n)eu(n+1)+u(n−1)−2u(n) −W (n+ 1)eu(n+2)+u(n)−2u(n+1)) dz′]ψn

+λ−1(uz(n− 1)− uz(n+ 1))eu(n+1)+u(n−1)−2u(n)ψn−1

−λ−2ψn−2e
u(n+1)−u(n)−u(n−1)+u(n−2) = 0. (5.2)

(5.1) and (5.2) under the transformation z → y serves as another Lax pair for the y-flow
(1.4).
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Appendix A. Hirota bilinear operator identities.

The following bilinear operator identities hold for arbitrary functions a, b, c, and d.

(Dxe
1
2
Dna · a)(e 1

2
Dnb · b)− (e 1

2
Dna · a)(Dxe

1
2
Dnb · b) = 2 sinh(1

2
Dn)(Dxa · b) · ab, (A1)

(D2
ye

1
2
Dna · a)(e 1

2
Dnb · b)− (e 1

2
Dna · a)(D2

ye
1
2
Dnb · b)

= Dy[(Dye
1
2
Dna · b) · (e− 1

2
Dna · b)− (e 1

2
Dna · b) · (Dye

− 1
2
Dna · b)], (A2)

Dy[(Dye
1
2
Dna · b) · (e− 1

2
Dna · b) + (e 1

2
Dna · b) · (Dye

− 1
2
Dna · b)]

= 2 sinh(
1
2
Dn)(D2

ya · b) · ab, (A3)

Dy(e
1
2
Dna · b) · (e− 1

2
Dna · b) = 2 sinh(1

2
Dn)(Dya · b) · ab, (A4)

sinh(
1
2
Dn)a · a = 0. (A5)
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