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Abstract

We provide a variational description of any Liouville, i.e. volume preserving, auto-
nomous vector field on a smooth manifold. This is obtained via a “maximal degree”
variational principle; critical sections for this are integral manifolds for the Liouville
vector field. We work in coordinates and provide explicit formulae.

Introduction

It is well known that Hamilton dynamics preserves the volume in phase space (Liouville’s
Theorem); it is thus a prominent example of incompressible (or volume-preserving) dy-
namics.
However, other dynamics which preserve the volume, or more generally a measure, in

phase space without being necessarily Hamiltonian, are also of physical interest. These are
called Liouville vector fields (see below for a precise definition). The motion of an incom-
pressible fluid is of course described by volume-preserving dynamics and is a prominent
physical example of Liouville dynamics.
Among relevant classes of volume-preserving dynamical systems, which are not neces-

sarily Hamiltonian, we mention Nambu mechanics [19] and reversible dynamics [13].
It has long been known that several subclasses of Liouville dynamics share important

features with the Hamiltonian one; for example, statistical mechanics can be properly
based on Nambu dynamics (this was actually the motivation for it [19]) and reversible
vector fields share many results of the perturbation theory of Hamiltonian systems, in-
cluding KAM theory [13].
It is thus entirely natural, and justified by physical relevance, to wonder what is the

extent to which Liouville dynamics shares the structures and properties of Hamiltonian
one.
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The question has been studied by several groups; we mention here in particular the
work of [14], extending to Liouville dynamics several geometric structures – including the
Poisson Bracket formulation – of Hamiltonian dynamics, and clarifying several points in
the geometrical formulation of Liouville dynamics. See [9, 15] for further developements
in this direction (also connected with Nambu-type systems).
Hamiltonian dynamics can be characterized in terms of a variational principle and this

is instrumental to establishing many results in Hamiltonian theory. It is thus natural to
investigate if some kind of variational formulation is also possible for general Liouville
vector fields (in general, a standard variational formulation is not possible for these).
The purpose of this note is to answer this question positively. We find that any Liou-

ville vector field on the phase space manifold P can be described as the unique properly
normalized characteristic vector field of a maximal degree variational principle (these no-
tions will be defined below) on the extended phase space M = R × P . This applies in
particular to any autonomous Liouville vector field on P , in which case the R factor can
be regarded as the physical time.
It should be stressed that, although in this note we work in local coordinates, an

intrinsic discussion would be possible and is actually given elsewhere, leading to more
general results [7]. Such an approach, however, requires to use the Cartan theory of
exterior differential systems. This theory is well known in differential geometry and in
the geometric theory of differential equations, but we believe the results given here can be
of interest to all physicists working on incompressible dynamics, who in general are not
necessarily familiar with Cartan theory.
Luckily, the case of Liouville fields can be dealt with at the much simpler level considered

here, i.e. working in coordinates and involving only basic notions of differential geometry
and rather elementary mathematical analysis.

1 Liouville dynamics

1.1 Liouville vector fields on phase space

Let P be a smooth and orientable N -dimensional manifold, from now on called the “phase
space”. We denote, as customary, by Λ(P ) the set of differential forms on P and by
Λk(P ) ⊂ Λ(P ) the set of forms of degree k. Recall that all volume forms on P (also
termed as measures) are equivalent. We choose a reference volume form Ω on P .
Let X be a vector field on P . We say that X is a Liouville vector field (with respect

to the measure Ω) if it preserves Ω, i.e. if LX(Ω) = 0, with L the Lie derivative.
As LX(α) := (X dα) + d(X α) and dΩ = 0, X is Liouville w.r.t. Ω if and only if

X Ω is closed. Locally this means that there exists an (N − 2)-form γ such that

X Ω = dγ. (1.1)

Thus X is Liouville with respect to Ω iff for any neighbourhood A ⊆ P equation (1.1) is
verified for some γ ∈ ΛN−2(A), i.e. iff X Ω is exact on A.
We say that X is globally Liouville with respect to Ω iff (1.1) is verified for some γ ∈

ΛN−2(P ), i.e. iff X Ω is exact on P .
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In the following, for ease of discussion and notation, we deal with the case where X
is globally Liouville. However, it is clear that for the sake of local considerations the two
cases are equivalent.
Note that, if X and Ω are given, γ is not uniquely defined by (1.1) (we can always add

a closed form γ1); on the other hand, if Ω and γ are given, then (1.1) uniquely defines X.
We have chosen a given volume form Ω; for any different choice Ω̃ of the volume form

we have Ω = ρΩ̃, with ρ a nowhere vanishing (positive, to preserve orientation) function
ρ ∈ Λ0(P ). Moreover, if Y Ω̃ = dγ and Ω = ρΩ̃, then X := ρY satisfies (1.1) with
the same γ. Hence whenever we have a vector field Y which is Liouville with respect to
a measure Ω̃, we can reduce to considering X and an exact volume form. Thus, from now
on, we assume Ω = dσ for ease of computation.

1.2 Enlarged phase space

It is convenient to consider the “enlarged phase space” M := R × P , where the R factor
corresponds to the time coordinate t. We denote the reference volume form in M corre-
sponding to Ω ∈ ΛN (P ) by ΩM := dt ∧ Ω ∈ ΛN+1(M). Then the dynamics defined by X
in P corresponds to the flow of Z in M , where

Z := ∂t +X. (1.2)

This satisfies, by construction, Z dt = 1.
We consider now a form ϑ ∈ ΛN−1(M) built from the σ defined above and from the

form γ associated to X via (1.1), defined as

ϑ := σ + dt ∧ γ. (1.3)

It is immediate to check that dϑ is nowhere zero.
We now prove that the form ϑ defined in (1.3) defines a unique vector field Z̃ on M via

Z̃ dϑ = 0, Z̃ dt = 1. (1.4)

Note that Z̃ dt 	= 0 implies that the vector field Z̃ has a nonzero component along ∂t.
To see that (1.4) defines a unique field, it suffices to note that dϑ is a N -form in the

manifold M of dimension N + 1. In this case its annihilator N (dϑ) (the set of vector
fields Y on M such that Y dϑ = 0) is a one-dimensional module over Λ0(M). Obviously
the first of (1.4) amounts to the requirement Z̃ ∈ N (dϑ).
Remark 1. More precisely, any form α ∈ ΛN (M) can be written in local coordinates(
x0, x1, . . . , xN

)
(we use the notation ∂µ ≡ ∂/∂xµ and t = x0) as Aµ(x)(∂µ ΩM ). It is

easy to check that the vector fields in N (α) are then written as Y = fµ∂µ with fµ(x) =
F (x)Aµ(x), where F ∈ Λ0(M).

Note next that Y ∈ N (dϑ) (and Y 	= 0) is necessarily such that Y dt 	= 0, just by
the form of ϑ. The second equation in (1.4) is therefore just a normalization condition,
selecting a unique vector field Z̃ out of the one-dimensional module N (dϑ).
Actually the vector field Z̃ defined by (1.4) is just the vector field Z defined above

in (1.2). Given that Z̃ is unique, to prove that Z̃ ≡ Z it suffices to check that Z satis-
fies (1.4).
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It is obvious that Z dt = 1, as already remarked. As for the first of (1.4), we have,
using dσ = Ω and (1.1),

Z dθ = X Ω+ (−1)N (Z dγ) ∧ dt+ (−1)(2N−1)dγ

= +dγ + (−1)N (X dγ) ∧ dt− dγ
= (−1)N (X dγ) ∧ dt = (−1)N [X (X Ω)] = 0.

This completes the proof. We summarize our results as follows.

Lemma 1. The equations (1.4), with ϑ given by (1.3), select uniquely the vector field Z
given in (1.2), where X satisfies (1.1).

2 Variational setting

We want now to prove that Z, and hence X, can be given a variational characterization.
This characterization is based on a suitable fibration π̃ : P → Q of the phase space over
a smoothK-dimensional manifold Q, which induces a fibration π :M → B of the extended
phase space, π := id× π̃. In order to do this we introduce the concept of a maximal degree
variational principle and of the associated characteristic field.

2.1 Variational principles

Consider a general smooth bundle π : E → B, with E a smooth manifold of dimension n
and B a smooth manifold of dimension k, with 1 ≤ k < n (in the next section we specialize
to the case E =M = R × P ). We assume the fibers π−1(x) are parallelizable.
We denote by Γ(π) the space of smooth sections ϕ : B → E of this bundle and by V(π)

the space of vector fields on E which are vertical for π, i.e. tangent to fibers π−1(x). Given
a form α ∈ Λ(E), we denote its pullback by a section ϕ ∈ Γ(π) as ϕ∗(α).
Let D ⊂ B be a domain, i.e. a closed compact manifold with boundary, in B, and

η ∈ Λk(E). We define a functional I : Γ(π)→ R by

I(ϕ) :=
∫

D
ϕ∗(η). (2.1)

A vector field V ∈ V(π) obviously induces an action on Γ(π). This results in turn in
an action on I(ϕ). More precisely denote by ψs the local flow of V on E and consider
a section ϕ0 ∈ Γ(π). The flow in Γ(π) originating from ϕ0 is the one-parameter family of
local sections ϕs = ψ̃s(ϕ0) := ψs ◦ ϕ0. We define the variation of I under V as

(δV ID)(ϕ) :=
d
ds

[∫
D

(
ψ̃s(ϕ)

)∗
(η)

]
s=0

. (2.2)

We denote by VD(π) ⊂ V(π) the set of vector fields on E which are vertical for the
fibration π : E → B, see above, and which vanish on the fibers over ∂D. We say that
ϕ ∈ Γ(π) is extremal (or also critical) for I defined by (2.1) if and only if δV I(ϕ) = 0 for
all V ∈ VD(π).
It is well known that, equivalently, ϕ is critical for I defined by (2.1) if and only if

ϕ∗(V dη) = 0 ∀ V ∈ VD(π). (2.3)
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Given the complete equivalence of this condition with the previous definition [12, 21], we
can take (2.3) as the definition of critical section.
It is convenient, as our considerations are local, to use local coordinates in E adapted

to the fibration π : E → B; that is, we use coordinates
(
x1, . . . , xk; y1, . . . , yp

)
where

k + p = n,
(
x1, . . . , xk

)
are coordinates in B, and

(
y1, . . . , yp

)
are vertical coordinates

spanning the fibers π−1(x). We write, for ease of notation,

∂i := ∂/∂xi, ∂α := ∂/∂yα, i = 1, . . . , k, α = 1, . . . , p. (2.4)

The image of a section ϕ ∈ Γ(π) is then locally the graph of a function u : Rk → Rp, i.e.
ϕ = {x,y = u(x)}. In these coordinates, ϕ∗(dyα) = (∂uα/∂xi)dxi.
The determination of equations describing critical sections for I is very well known

and we just recall it to fix notation. Any V ∈ V(π) is written in these local coordinates
as V = fα∂α. The set VD(π) is identified by the condition that fα = 0 on π−1(∂D).
Thus (2.3) requires that ϕ∗[fα(∂α dϑ)] = 0 for arbitrary fα (vanishing on π−1(∂D)).
Hence we need ϕ∗(∂α dϑ) = 0 for all α = 1, . . . , p.
It is natural to introduce the k-forms Ψα := ∂α dϑ. The section ϕ is critical for I if

and only if

ϕ∗(Ψα) = 0 α = 1, . . . , p. (2.5)

Remark 2. It should be noted that the fibration π : E → B is nontrivial for 1 ≤ k ≤ n−1.
However, the case k = n − 1 provides trivial equations (as discussed in [7]), so we have
to require 1 ≤ k ≤ n − 2. The case k = 1 corresponds to the well known case of one
independent variable (as in standard hamiltonian dynamics) and it is well known that
in this case the variational principle identifies a vector field on E, i.e. yields a system of
ODEs for ϕ. For k > 1, the variational principle yields a system of PDEs for ϕ. In the
local coordinates introduced above, this is a system of p equations for the p functions
uα

(
x1, . . . , xk

)
depending on k independent variables.

Remark 3. Note that the fibration π : E → B is to a large extent arbitrary. Basically it
amounts to a choice of which variables should be considered as independent and which as
dependent in formulating the variational principle and has no intrinsic meaning. Later on,
when we specialize to E = M = R × P and study a dynamics (see Section 3), we require
that the time be kept as one of the independent variables. This means that B = R ×Q,
and the fibering π : M → B is induced by a fibering π̃ : P → Q as anticipated above.
Note also that the variational principle is always formulated over a domain D ⊂ B, i.e. in
local terms.

2.2 The maximal degree case

In view of Remark 2 above we say that for k = n − 2 we have a maximal degree varia-
tional principle. We are interested in this case, and we show below that these variational
principles still identify a vector field on E, i.e. a system of ODEs associated to it.
As k = n−2, we have p = 2. We write z ≡ y1 and w ≡ y2 to avoid a plethora of indices.

We write ω = dx1 ∧ · · · ∧ dxk for the reference volume form in B. The reference volume
form in E is π∗(ω) ∧ dz ∧ dw. In the following we write, with a slight abuse of notation,
ω for π∗(ω). In this case, when studying the variational principle defined by (2.1), (2.2),
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we should consider β := dη ∈ Λn−1(E). We can always write any β ∈ Λn−1(E) in the
form

β =
k∑

µ=1

Aµ
[
ω(µ) ∧ dz ∧ dw

]
+ (−1)kf [ω ∧ dw] + (−1)k+1g [ω ∧ dz] , (2.6)

with µ = 1, 2, Aµ, f , g smooth functions of (x, z, w), and ω(µ) := ∂µ ω.
In the following we assume that the vector A =

(
A1, . . . , Ak

)
is not identically zero. In

this case we say that the maximal degree variational principle defined by η is proper.
In the present notation we choose ∂z and ∂w as generators of V(π), i.e. Ψ1 = ∂z β,

Ψ2 = ∂w β. With ϕ ∈ Γ(π) we have

Ψ1 = (−1)k−1
[
Aµ(ω(µ) ∧ dw) + (−1)kgω

]
,

Ψ2 = (−1)k
[
Aµ(ω(µ) ∧ dz) + (−1)kfω

]
,

ϕ∗(Ψ1) = ϕ∗ [Aµ(∂w/∂xµ)− g]ω,
ϕ∗(Ψ2) = −ϕ∗ [Aµ(∂z/∂xµ)− f ]ω. (2.7)

The requirement of the vanishing of both ϕ∗(Ψj) for j = 1, 2 means looking for solutions
of two quasilinear first order PDEs:

ϕ∗ [LY (z)− f ] = 0, ϕ∗ [LY (w)− g] = 0 (2.8)

(with obviously Y = Aµ∂µ, and LY the Lie derivative). Note that as A 	= 0 in (2.6) we
are guaranteed Y 	= 0.
The relevant property is that the equations can be written in terms of the action of

the same (nonzero) vector field Y or, more precisely [1], in terms of the (non-vertical, as
Y 	= 0) vector field W = Y + f∂z + g∂w on E, i.e.

W =
n−2∑
µ=1

Aµ(x; z, w)
∂

∂xµ
+ f(x; z, w)

∂

∂z
+ g(x; z, w)

∂

∂w
. (2.9)

Indeed, as is well known (see e.g. chapter II.7.G of [1]), the R2-valued function u(x, t) =
(z(x, t), w(x, t)) is a solution to the system of quasilinear PDEs (2.8) if and only if its graph
is an integral manifold for the associated characteristic system

dxµ/ds = Aµ, dz/ds = f, dw/ds = g, (2.10)

i.e. for theW given above (the characteristic system (2.10) is often written in the so-called
symmetric form, i.e. as dx1/A1 = · · · = dxk/Ak = dz/f = dw/g).
We recall that, if X is a vector field on E and the submanifold S ⊂ E is such that

X(x) ∈ TxS for all x ∈ S, we say that S is an integral (or invariant) manifold for X. If S
is invariant for X and one-dimensional, we also say it is an integral curve of X.
It is thus entirely natural to call the W given by (2.9) the characteristic vector field for

the maximal degree variational principle on π : E → B defined by a form η ∈ Λn−2(E)
such that dη = β is given by (2.6).
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Note that the above computations imply that for given η we have a one-dimensional
module of characteristic vector fields (all differing by multiplication by a nowhere zero
smooth function), hence defining a unique direction field on E (see [1]).
Summarizing, with the above discussion we have proved that:

Theorem 1. Let π : E → B be a fibration of the smooth n-dimensional manifold E over
the (n−2)-dimensional manifold B, and let η ∈ Λn−2(E) be such that dη = β is written as
in (2.6). Then the section ϕ ∈ Γ(π) is critical for the maximal degree proper variational
principle defined via the functional (2.1) if and only if it is an invariant manifold of the
characteristic vector fields for the variational principle.

Corollary. Given an integral curve Γ of a characteristic vector field for the variational
principle defined by (2.1) and a critical section ϕ of it, either Γ ∩ ϕ = ∅ or Γ ⊂ ϕ.

The corollary implies that we can describe the k-dimensional critical sections ϕ for
a variational principle as the union of integral curves of the characteristic vector field W
for the same variational principle passing through a suitable submanifold ϕ0 ⊂ ϕ of di-
mension k − 1.
Note that, if one of the Aµ, say A1, is nowhere zero, we can factor this from W , and

obtain a vector field of the form

Z = ∂1 +X (2.11)

with X dx1 = 0.
We also remark thatW is tangent to sections ϕ ∈ Γ(π) such that ϕ∗(Ψ1) = 0 = ϕ∗(Ψ2),

see above and [1]. On the other hand ϕ∗(Ψi) = 0 means that Ψi vanish on vector fields
tangent to ϕ and hence vanish if evaluated on W , i.e. W Ψi = 0. We have thus proven
that:

Lemma 2. The W identified by (2.9) satisfies W Ψ1 = 0 =W Ψ2.

3 Variational principle for Liouville dynamics

In this section we apply the discussion on maximal degree variational principles developed
in the previous section to the case of Liouville dynamics.
We consider, with the notation introduced in Section 1, E =M = R×P , andB = R×Q.

Note that n = N + 1 and k = K + 1. We stress that the fibering π :M → B is naturally
induced by a fibering π̃ : P → Q, i.e. with obvious notation π = id× π̃ (see also Remark 3
above).
Accordingly we use local coordinates adapted to the double fibration of M . We call

these
(
t; ξ1, . . . , ξk; y1, y2

)
, where t is the coordinate along R,

(
ξ1, . . . , ξk

)
are coordinates

in Q – hence (t; ξ) are coordinates in M – and yα are “vertical” coordinates on the fibers
π−1(t; ξ) = π̃−1(ξ). The setting of the previous section is recovered via x1 := t, xj+1 := ξj .
In order to recover the Liouville vector field X satisfying (1.1) as the vector field

identified by a maximal degree variational principle, it suffices to choose as η the form ϑ
defined in (1.3). Note that in this case, using the notation (2.6), we have indeed that A1

is nowhere zero.
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With local coordinates (x, z, w) as in the previous section, write V1 = ∂z, V2 = ∂w and
consider a vector field X which is nonzero and non-vertical. Hence Vj (X dη) = 0 for
j = 1, 2 means that χ := X dη does not contain dz or dw factors. However, this is
impossible unless X dη = 0. Indeed χ ∈ Λk(M). Hence χ = F (x, z, w)dx1 ∧ · · · ∧ dxk.
This cannot be obtained by χ = X β if X is independent of ∂z and ∂w. In other words,
we have proven the

Lemma 3. Let X be a non-vertical vector field for the fibration π : M → B, where
dim(M) = dim(B) + 2. Then V (X dη) = 0 for all V ∈ V(π) implies – and is thus
equivalent to – X dη = 0.

Note that this applies toW provided this is non-vertical, i.e. provided the Aµ identifying
dη – see (2.6) – are not all identically vanishing. However, as remarked above, in the case
we are discussing A1 	= 0 at all points and this condition is hence satisfied. We have thus
proven the following:

Theorem 2. The characteristic vector field W for the variational principle defined by η
satisfies W dη = 0.

Recalling that N (dη) is one dimensional (see also Remark 1 for its explicit description)
we also have the

Corollary. Any vector field V such that V dη = 0 satisfies V = fW for some smooth
function f : M → R, with W being the characteristic vector field for the variational
principle defined by η.

It follows from Lemma 3 that we can redefine proper maximal degree variational prin-
ciples and their characteristic vector fields of a maximal degree variational principle in
a coordinate-independent manner as follows.

Definition 1. The maximal degree variational principle defined by η on the fiber bundle
π :M → B is proper if there are vector fields V1, V2 ∈ V(π) such that [V1 (V2 dη)] 	= 0.
Definition 2. A vector field W on M satisfying W dη = 0 is a characteristic vector
field for the maximal degree proper variational principle on π :M → B defined by η.

In view of Lemma 3 the discussion of the previous section and that of Section 1, when
compared, show that the vector field Z defined in (1.4) is a characteristic vector field
for the variational principle defined by ϑ, see (2.1). Note that the condition W dt = 1
selects among the characteristic vector fields the one with the proper normalization, i.e.
it imposes W ≡ Z.
This provides therefore a unique characterization of the Liouville vector field X in

terms of the variational principle on the bundle π : M → B defined by the form ϑ. We
summarize our result in the following

Theorem 3. Let X be a vector field on the phase space manifold P , globally Liouville
w.r.t. the volume form Ω = dσ and satisfying (1.1). Then the vector field Z := ∂t + X
on the enlarged phase space M = R × P is a characteristic vector field for the variational
principle on π : M → B defined by the form ϑ in (1.3), and is uniquely selected by the
normalization condition Z dt = 1.
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Obviously our discussion could as well be read in the opposite direction: consider
M = R×P , where P isN -dimensional and orientable. Then, given any form γ ∈ ΛN−2(P ),
our construction provides a unique vector field X on P , which is obviously guaranteed to
be Liouville w.r.t. the volume form Ω := dσ.
This is similar to the situation met in Hamiltonian dynamics on a symplectic mani-

fold (S, ω), where the relation between the symplectic form ω ∈ Λ2(S), the Hamiltonian
function H ∈ Λ0(S) and the Hamiltonian vector field X is given by X ω = dH. On
the one hand any given H generates through this relation a unique vector field X. On
the other hand one can assign the vector field X and look for functions H (obviously
depending on X itself) generating such a vector field. As is well known this also provides
a variational characterization, via Hamilton’s principle, for the vector field X.

Remark 4. Finally we mention that here we have dealt with vector fields which are
globally Liouville, see Section 1.1. However, similar results hold in the case of locally
Liouville vector fields [14], with obvious modifications: e.g. the forms γ and σ are not
necessarily globally defined, and one has to work chart by chart. Similarly, to avoid
chartwise discussion, we dealt with the case of globally exact volume form, Ω = dσ, but
this restriction is inessential, as we discussed at the end of Section 1.1.

4 Examples – I

In this section we consider three general classes of Liouville dynamics: Hamilton, Nambu,
and Hyperhamilton dynamics. Specific equations are considered in the next section.
Note that, in view of our results (see in particular Theorem 2), the interesting object is

the form ϑ, while the choice of the fibration π :M → B is inessential and has no intrinsic
meaning (see Remark 3). We therefore provide, in this and the next section, just ϑ in
order to describe how the considered systems are treated in our formalism.

4.1 Hamilton dynamics

As is well known, any Hamiltonian vector field is also Liouville. Let us describe how this is
identified by a maximal degree variational principle (beside the standard minimal degree
variational principle based on the Poincaré–Cartan one-form).
Let P be a smooth manifold of dimension n = 2m, equipped with a symplectic form ω.

We write ζ = (1/(m − 1)!)(ω)(m−1) (this is obviously an exterior power). Choose a form
ρ ∈ Λ1(P ) such that locally ω = mdρ.
The smooth functionH : P → R defines the Hamiltonian vector fieldX byX ω = dH.

On the other hand Ω = (1/m!)(ω)m = (1/m)ω ∧ ζ. Thus
X Ω = (X ω) ∧ ζ = dH ∧ ζ, (4.1)

and X satisfies (1.1) with γ = Hζ.
It follows immediately that the corresponding maximal degree variational principle is

based on the form ϑ ∈ Λ2m−1(M) (recall M = R × P ) given by

ϑ = ρ ∧ ζ +Hζ ∧ dt = (ρ+Hdt) ∧ ζ. (4.2)

Hamilton’s equations are readily recovered from this.
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4.2 Nambu dynamics

Nambu dynamics [19] has enjoyed a renewal of interest in recent years, see e.g. [4, 10, 11,
22]. See also [16] for a discussion of it in terms of forms and Cartan ideals. It is well
known that Nambu dynamics is also Liouville and that in general it cannot be described
in terms of a standard, i.e. degree one, variational principle.
An intrinsic definition of Nambu vector fields is as follows: consider a smooth n-di-

mensional manifold P with volume form Ω. Then the vector field X on P is Nambu if
there is a choice of n− 1 smooth functions Hi : P → R (i = 2, . . . , n) such that

dH2 ∧ · · · ∧ dHn := χ = X Ω. (4.3)

We have immediately that χ = dγ with e.g.

γ = H2 dH3 ∧ · · · ∧ dHn. (4.4)

We also write e.g. σ = x1dx2∧· · ·∧xn, which yields dσ = Ω. (For both γ and σ one could
use a different permutation of indices).
With these, θ is readily recovered, see (1.3), and hence – for anyX – we have determined

the maximal degree variational principle defining the Nambu vector field X.

4.3 Hyperhamiltonian vector fields

Another special class of Liouville vector fields is provided by hyperhamiltonian vector fields,
generalizing Hamilton dynamics and studied in [5, 6, 17]. These are based on hyperkahler
(rather than symplectic) structures [2].
In this case one considers a Riemannian manifold (P, g) of dimension p = 4N equipped

with three independent symplectic structures ωα (α = 1, 2, 3). To a triple of smooth
functions Hα : P → R one associates a triple of vector fields by (no sum on α) Xα ωα =
dHα. The hyperhamiltonian vector field X on P associated to the triple {Hα} is the sum
of these, X :=

3∑
α=1

Xα. It is trivial to check that the Xα, and therefore X, are uniquely

defined. Each Xα is obviously Liouville and so is X.
On the (p+1) dimensional manifold M = R×P (denote by t the coordinate on R) the

time evolution under X is described by the vector field Z = ∂t +X.
Let ρα be one-forms (non-unique, and possibly defined only locally) satisfying dρα = ωα,

and ζα the (2N − 1)-th exterior power of ωα. Define (with s = ±1 taking care of matters
of orientation [5])

ϑ =
3∑

α=1

ρα ∧ ζα + (6Ns)
3∑

α=1

Hαζα ∧ dt. (4.5)

It is easy to check that dϑ is nonsingular and that Z dϑ = 0, Z dt = 1. It follows
from our general discussion that the vector field Z is also obtained by a maximal degree
variational principle based on the form ϑ.
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5 Examples – II

In this section we consider some specific and simple – but physically relevant – examples:
the Euler top, the ABC flow, the motion of a charged particle and of a spin in a magnetic
field.

5.1 The rigid body

Consider the Euler equations for rotations of a free rigid body around its center of mass
in three-dimensional space with orthonormal basis vectors (e1, e2, e3). We work in the
space R3 of angular velocities so that x represents the angular velocity and xi is the
component of the angular velocity in the direction ei. The evolution vector field is now
given by X = f i∂i, where

f1 := µ1x
2x3, f2 := µ2x

3x1, f3 := µ3x
1x2,

µ1 = (I2 − I3)/I1, µ2 = (I3 − I1)/I2, µ3 = (I1 − I2)/I3. (5.1)

The volume form is Ω = dx1 ∧ dx2 ∧ dx3. Hence X Ω = f1dx2 ∧ dx3 − f2dx1 ∧ dx3 +
f3dx1 ∧ dx2.
We write the one-form γ as γ = Aµdxµ. Equation (1.1) is f i = εijk∂jAk or, in vector

notation, f = rot(A). The solution to this is, up to an exact form γ′ = dg (g a scalar
function),

A1 =
1
2
µ2x

1
(
x3

)2
, A2 =

1
2
µ3x

2
(
x1

)2
, A3 =

1
2
µ1x

3
(
x2

)2
. (5.2)

Therefore, see (1.3), the θ appearing in the variational principle for the Euler rigid body
equations is (with the Ai given above),

ϑ = x1dx2 ∧ dx3 −
3∑

i=1

Ai(dxi ∧ dt). (5.3)

5.2 The ABC flow

The so called ABC flow has been introduced by Hénon and is of interest in fluid dynamics.
It lives in R3 and is characterized by the fact that, with X = f i∂i, the vectors f and rot(f)
are collinear (see e.g. [1]).
We have explicitely

f1 = A sin
(
x1

)
+ C cos

(
x2

)
, f2 = B sin

(
x1

)
+A cos

(
x2

)
,

f3 = C sin
(
x2

)
+B cos

(
x1

)
. (5.4)

The volume form is again Ω = dx1 ∧ dx2 ∧ dx3. Hence

X Ω =
[
C sin

(
x2

)
+B cos

(
x1

)]
dx1 ∧ dx2 − [

B sin
(
x1

)
+A cos

(
x3

)]
dx1 ∧ dx3

+
[
A sin

(
x3

)
+ C cos

(
x2

)]
dx2 ∧ dx3. (5.5)
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The solution to X Ω = dγ is, up to exact forms γ′, given by

γ =
[
A sin

(
x3

)
+ C cos

(
x2

)]
dx1 +

[
B sin

(
x1

)
+A cos

(
x3

)]
dx2

+
[
C sin

(
x2

)
+B cos

(
x1

)]
dx3. (5.6)

The ϑ defining our variational principle for the ABC flow is therefore, up to an inessential
closed form, given by

ϑ = x1dx2 ∧ dx3 − γ ∧ dt. (5.7)

5.3 Particle motion in a stationary magnetic field

We consider now a point particle of mass m and charge q moving in three-dimensional
space under the effect of magnetic field B (no electric field). Then the equations of motion
are ẍ = k(v × B), with k = q/m and with × the cross (vector) product in R3. We can
rewrite these as a first order system in R6 as

ẋ = v, v̇ = k(v × B) (5.8)

(if B is also constant in space, we can just consider the second equation and work in the
three-dimensional space of velocities). The corresponding vector field, obviously with zero
divergence, is thus

X := vi
(
∂/∂xi

)
+ wi

(
∂/∂vi

)
, (5.9)

where we have defined, with ε the Levi–Civita tensor, wi := kεij�v
jB�.

We write ωi := dxi ∧ dvi (no sum on i) and the volume form Ω in R6 is written as
Ω = ω1 ∧ ω2 ∧ ω3.
We have, with this notation,

X Ω =
(
v1dv1 − w1dx1

) ∧ ω2 ∧ ω3 +
(
v2dv2 − w2dx2

) ∧ ω3 ∧ ω1

+
(
v3dv3 − w3dx3

) ∧ ω1 ∧ ω2. (5.10)

Consider a γ ∈ Λ4
(
R6

)
of the form

γ = γ1 − γ2,

γ1 := (1/2)
[(
v1

)2
ω2 ∧ ω3 +

(
v2

)2
ω3 ∧ ω1 +

(
v3

)2
ω1 ∧ ω2

]
,

γ2 :=
[
Fa(x)v2 + Fb(x)v3

]
ω2 ∧ ω3 +

[
Ga(x)v1 +Gb(x)v3

]
ω3 ∧ ω1

+
[
Ha(x)v1 +Hb(x)v2

]
ω1 ∧ ω2. (5.11)

With these choices we obviously have

dγ1 = vi
[(
∂/∂xi

)
Ω

]
= v1

(
dv1 ∧ ω2 ∧ ω3

)
+ v2

(
dv2 ∧ ω3 ∧ ω1

)
+ v3

(
dv3 ∧ ω1 ∧ ω2

)
(5.12)

and thus, recalling that B does not depend on v, X Ω = dγ if and only if(
∂Fa/∂x

1
)
= kB3,

(
∂Fb/∂x

1
)
= −kB2,

(
∂Ga/∂x

2
)
= −kB3,(

∂Gb/∂x
2
)
= kB1,

(
∂Ha/∂x

3
)
= kB2,

(
∂Hb/∂x

3
)
= −kB1. (5.13)
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Needless to say we can always find functions Fa, . . . , Hb satisfying these, just by integra-
ting Bi in different variables xj (i, j = 1, 2, 3).
As for σ, we can e.g. choose

σ = (1/3)
(
x1dv1 ∧ ω2 ∧ ω3 + x2dv2 ∧ ω3 ∧ ω1 + x3dv3 ∧ ω1 ∧ ω2

)
. (5.14)

The form ϑ corresponding to X given in (5.9) is then immediately obtained by (1.3) using
this and (5.11).

5.4 Spin motion in a magnetic field

As a last example we consider a particle with spin 1/2 in a spatially constant magnetic field
and the evolution of its spin wave function as described by the Pauli equation. Disregarding
the evolution of the wave function associated to the spatial coordinates, we have the
equation

dΨ
dt

= iκ(B · S)Ψ. (5.15)

Here κ = 4πµ/h is a dimensional constant, Ψ is a two-component spinor, Ψ = (ψ+, ψ−)
with ψ±(t) ∈ C and |Ψ|2 = 1, the real vector B is the magnetic field, with components
B(t) = (Bx, By, Bz), and S is the vector spin operator with components the Pauli σ
matrices so that the linear operator M := B · S appearing in (5.15) is given by

M =
(

Bz Bx − iBy

Bx + iBy −Bz

)
. (5.16)

Equation (5.15) can be rewritten as an equation in R4 rather than in C2. In order to
do so we rewrite ψ± separating their real and imaginary part as ψ± = χ±+ iζ±. With the
isomorphism C1 � R2 given by 1 � (1, 0), i � (0, 1), the operator of multiplication by i is
represented in R2 by the real antisymmetric matrix with J12 = −1 = −J21 and thus

iM ≈
(

BzJ ByI +BxJ
−ByI +BxJ −BzJ

)
. (5.17)

Finally we obtain that the R4 representation of equation (5.11) is given by

dξ

dt
= κAξ, (5.18)

where

ξ =



χ+

ζ+
χ−
ζ−


 , A =




0 −Bz By −Bx

Bz 0 Bx By

−By −Bx 0 Bz

Bx −By −Bz 0


 . (5.19)

It is easy to check by explicit computation that this equation is hyperhamiltonian (with
orientation corresponding to s = −1), with the symplectic structures given by

ω1 = dx1 ∧ dx3 + dx2 ∧ dx4, ω2 = dx4 ∧ dx1 + dx2 ∧ dx3,

ω3 = dx2 ∧ dx1 + dx3 ∧ dx4, (5.20)
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and the Hamiltonians given by

H1(ξ, t) = (1/2)By(t)‖ξ‖2, H2(ξ, t) = (1/2)Bx(t)‖ξ‖2,

H3(ξ, t) = (1/2)Bz(t)‖ξ‖2. (5.21)

We can choose e.g.

ρ1 = x1dx3 + x2dx4, ρ2 = x4dx1 + x2dx3, ρ3 = x2dx1 + x3dx4. (5.22)

With these and (5.20), (5.21) above, the expression for ϑ is immediately read from (4.5)
with s = −1.

Appendix. Hodge duality and the variational principle

In this appendix we show how the form ϑ entering in our discussion is related to the vector
field X via the Hodge duality (see e.g. [18, 20]).
Consider a smooth m-dimensional orientable Riemannian manifold (M, g0) with local

coordinates ξi (i = 1, . . . ,m). In a local chart vector fields and one-forms admit the bases
made of ∂i := ∂/∂ξi and dξi. These are dual to each other and we write ∂i = d̃ξi and
dξi = ∂̃i to denote this duality. We denote the Levi–Civita (completely antisymmetric)
covariant tensor by εµ1···µm , with value ±1 according to the parity of the permutation
(µ1, . . . , µm). The Hodge star is the linear map ∗ : Λr(M)→ Λm−r(M) defined by

∗ (dξµ1 ∧ · · · ∧ dξµr) :=

√|g0|
(m− r)!

εµ1···µr
νr+1···νmdξ

νr+1 ∧ · · · ∧ dξνm .

Let, as in the main body of the paper, P be a smooth orientable Riemannian manifold
of dimension N with metric g and volume form Ω, on which a vector fieldX satisfying (1.1)
for some γ ∈ ΛN−2(P ) is defined. We consider the manifold M = R × P , with metric
g0 = δ ⊗ g (so that |g0| = |g|) and coordinates (

t, x1, . . . , xN
)
.

We now consider the form ϑ defining the variational principle for X = f i∂i, see Theo-
rem 3 above, and given by (1.3). We have ϑ = σ + dt ∧ γ and thus dϑ = Ω + dt ∧ dγ.
Recalling (1.1), we have dϑ = Ω+ f i[dt ∧ (∂i Ω)]. The Hodge dual of this is

∗ (dϑ) = ∗(Ω) + f i ∗ [(∂i Ω) ∧ dt] =
√
|g−1|


dt+ N∑

j=1

f jdxj


 .

If now we consider the vector field which is dual of this one-form in the sense of the duality
between forms and vector fields, we have

∗̃(dϑ) =
√
|g−1| [∂t +X] =

√
|g−1|Z.

By reversing the argument, or by acting firstly with the tilde and then with the star
operators on this equation, we have that:

Lemma 4. The form ϑ ∈ ΛN−1(M) defining the variational principle associated to the
Liouville vector field X satisfies dϑ =

√|g−1| ∗ (Z̃).
Note that this condition completely determines the variational principle. Indeed it

identifies ϑ up to a closed form, which has no role in the variation of I(ϕ) =
∫
D ϕ

∗(ϑ).
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