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Abstract  

A network of coupled Kuramoto-like os-

cillators is studied to model the dynamics 

in modern power systems. While previ-

ous works focus on the criteria of syn-

chronization, we in this paper study the 

development of desynchronization, which 

may lead to power outrage and system 

breakdown in real power systems. Instead 

of numerically simulating detailed com-

ponent-level models, we use a simplified 

network-reduced model which captures 

essential features of a real system, includ-

ing spread of desynchronization waves 

under disturbances. Some statistical re-

sults about the relation between the max-

imum disturbance and coupling strength 

are also found.  

Keywords: Power system stability, Com-

plex networks, Kuramoto-like model, De-
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1. Introduction 

Recently, the problems of synchroniza-

tion and transient stability in power grids 

have been analyzed using Kuramoto-like 

models [1-3]. In these works, the original 

Kuramoto oscillator, a paradigm in mod-

ern complex networks research [4,5], has 

been modified to describe the dynamics 

in simplified power systems. Essentially, 

the stable operation of power grids, like 

the synchronization of coupled Kuramoto 

oscillators, is to maintain a phase-locked 

state of the whole system [6]. In addition 

to control at the power generation end, 

which is currently used to achieve syn-

chronization, the development of smart 

grid [7,8] extends the control to the con-

sumer side to cope with the more distrib-

uted supply in future. Ultimately, numeri-

cal simulations of detailed component-

level models are necessary for each spe-

cific case. However, simplified modeling 

the power grids with interconnected non-

linear oscillators may help to obtain some 

general insights on the network level. 

The organization of this paper is as fol-

lows. In Section 2, the derivation of the 

Kuramoto-like oscillator networks as a 

power grid model is outlined following 

Ref. [1,2]. We also examine the existence 

of synchronized state in two simplest cas-

es with two or three nodes. In Section 3, 

we consider a ring of identical dynamical 

units with varying coupling strength. The 

master stability analysis [9] is applied to 

estimate the onset of desynchronization, 

which will then spread to the whole sys-

tem like a wave as indicated by numerical 

results. Some comments and conclusions 

are drawn in Section 4.  

2. The Model 

Consider a network of   synchronous 

generators (production) and motors (load). 

The state of element   is described by its 

phase           and phase 

ty          , where   is the grid fre-

quency. Note that the elements here may 

refer to either a real generator/motor or an 
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equivalent representation of a sub-grid. 

The latter is called network reduction, the 

first step toward understanding dynamical 

processes on complex networks. 

The generated power        of element 

  must balance the power transmitted to 

the grid          plus that for local accel-

eration                 
 
    and dissi-

pation             
 
, where   , the fric-

tion coefficient, and  , the moment of in-

ertia, are assumed to be uniform across 

the network in this paper. 

Assuming           , to the first or-

der approximation, one has               

and                     . If the capac-

ity (maximum transmission power) of the 

line connecting two elements   and   is 

                 , the power flow from 

  to   is then                  , or 

equivalently,                    . When 

  and   are not connected, we simply 

set          . 

The equation of motion is thus: 
 

                                       (1) 
 

where                      rep-

resents the generation capability of ele-

ment  ,        is an effective damping 

coefficient and                  en-

codes both coupling strength and connec-

tivity. When the acceleration term, i.e. 

left side of Eq. (1), is negligible, the sys-

tem is reduced to the Kuramoto model.  

In synchronized state, all   elements 

work at the grid frequency and the 

steady-state solution of Eq. (1) is a set of 

constant phases         

 
. A necessary 

condition for this is       , that is, to-

tal generated power balances load. 

When 2N , and set PPP  21
, 

0ˆ
2  , kkk  2112

, then there is a glob-

ally stable fixed point at )/arcsin(ˆ
1 kP  

for kP  . Otherwise, the phase differ-

ence is shown to converge to a limit cycle 

under weak damping (small  ) [1]. 

When     under a chain configura-

tion,          ,           , 

         ,     ,       , 

         , where c and b are param-

eters. A fixed point of the system is: 

     ,                   ,     
                   for certain range 

of the parameters. In Fig. 1, we show the 

region of synchronization in the parame-

ter space. Note that kP   is not required 

for the existence of fixed points. 
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Fig. 1:  The synchronization region in 3-node 

chain with (a) P/k<1 and (b) P/k>1. 

3. Desynchronization Waves 

The main conclusions of previous works 

state that when the coupling strength is 

high enough, a self-organized synchroni-

zation will be approached in the system. 

However, an unanswered question is: 

starting from a synchronized state, how 

does the desynchronization develop? In-

tuitively, if there is a disturbance at a 

node, it will deviate from the steady state 

and “drag” its neighbors away from their 

original states, which will affect more ad-

jacent nodes in turn. Under certain condi-
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tions, this cascade can spread over the 

whole network without significant decay. 

Quantitatively, perform the small sig-

nal perturbation of Eq. (1): 
 

                                     (2) 
 

where     is the small deviation from 

the steady state    ,            when 

ji  , and     =       .  

Now consider a special case: let 

                    , where constant 

  is the global strength of coupling and 

the matrix G  is a symmetric Laplacian, 

i.e.         and       . Further, the 

N elements are arranged in a ring config-

uration with nearest-neighbor couplings. 

The form of the connectivity matrix G  is:  
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where )( 1 kkk bba  for Nk ,,1  

(take 
Nbb 0

), and the values of 
kb can be 

randomly sampled from uniform distribu-

tion ]1,0[U . For each particular realiza-

tion of G , calculate the largest eigenval-

ue   and the corresponding eigenvector 
N

jju 1}{ 
. The eigenvector has sharply lo-

calized amplitude peak at certain node 

and decay exponentially away.  

In the simulation below, we will fix 

100N , 01.0  s
-1

. The initial syn-

chronized state is obtained in the follow-

ing way: N

jj 1}ˆ{   is randomly sampled 

from a uniform distribution, and given k  

and G , the   ’s can be solved from the 

steady-state version of Eq. (1).  

The disturbance is realized by impos-

ing a perturbation  on the phase. Ac-

cording to master stability analysis [9], as 

the coupling strength increases, the mode 

with the largest eigenvalue become un-

stable first and the oscillators in the re-

gion of unstable mode desynchronize. So 

the initial disturbance takes a localized 

form with amplitude  .  

 

 
(a) 

 
(b) 

Fig. 2:  Short term (a) and long term (b) dy-

namic distribution of the phase shifts 

of all oscillators for 1.0k  and 

1.0 . The arrows indicate the di-

rection of the desynchronization wave 

propagation. 

In Fig. 2, we show the snapshots of the 

distribution of the phase shifts of all os-

cillators at different time steps for 

1.0k  (weak coupling) and 1.0 . As 

seen from Fig. 2, the initial disturbance 

spreads to adjacent nodes as the ampli-

tude decreases. In this case, the coupling 

strength between neighboring elements is 
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weak, and essentially the dynamic behav-

ior of Eq. (2) is damped oscillation. After 

sufficiently long time (> 500 s), all ele-

ments will have essentially zero phase 

shift, i.e. back to the synchronized state. 
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Fig. 3: Simulation results with various combi-

nations of parameters   and   . The 

phase plane is divided into two regions: 

Region I (II) where the maximum de-

viation from steady state can (cannot) 

stay below 1% of the initial perturba-

tion  . 

When the coupling strength exceeds 

some threshold, the desynchronized wave 

will quickly spread over the whole sys-

tem. However, the long term behavior is 

distinct from that of weak coupling. 

There will be a persistent fluctuation in 

the distribution of phase shifts, which 

means that the system cannot return to 

synchronization anymore.  

Fig. 3 presents the results of the simu-

lations exploring the parameter plane 

of    ,     and locating the boundary be-

tween the two above-mentioned regimes. 

As the coupling strength    increases, 

smaller initial perturbation    is required 

to restore synchronization. 

We also notice that, when the coupling 

strength is very high (    ), the system 

can be unstable and phase shift at some 

nodes may diverge. It remains unclear 

whether this is due to numerical error or 

dynamical instability. 

Detailed theoretical analysis and nu-

merical scheme will be presented in a fu-

ture publication. The network topology in 

this section can be easily extended to 

more complex cases such as small world 

networks and Erdos-Renyi networks. 

However, our example is more mathe-

matically tractable. 

4. Conclusions 

In summary, the Kuramoto-like oscilla-

tors can capture essential features of real 

systems, including wave-like propagation 

of desynchronization under disturbances. 

Based on a simplified model of power 

grid, we demonstrated the development 

of desynchronization and its relation with 

coupling strength. Although in previous 

works, strong coupling is required to real-

ize a globally synchronized state, we find 

that when certain localized disturbance 

can spread over the whole network and 

will be persistent if the coupling is strong.  

5. References  

[1] M. Rohden, et al, Phys. Rev. Lett. 

109, 064101 (2012).  

[2] G. Filatrella, A. H. Nielsen, and N. F. 

Pederson, Eur. Phys. J. B 61, 485 

(2008). 

[3] F. Dorfler and F. Bullo, SIAM J. 

Control Optim. 50, 1616 (2012). 

[4] J. A. Acebron, et al, Rev. Mod. Phys. 

77, 137 (2005). 

[5] A. Arenas, et al, Phys. Reports 469, 

93 (2008). 

[6] P. Kurdur, Power System Stability 

and Control (McGraw-Hill, New 

York, 1994). 

[7] D. Butler, Nature 445, 586 (2007). 

[8] E. Marris, Nature 454, 570 (2008). 

[9] J. G. Restrepo, E. Ott, and B. R. Hunt, 

Phys. Rev. Lett. 93, 114101 (2004). 

1353




