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Abstract

Results on the Volterra model which is associated to the simple Lie algebra of type A,,
are extended to the Bogoyavlensky—Volterra systems of type B,,, C,, and D,,. In par-
ticular we find Lax pairs, Hamiltonian and Casimir functions and multi-Hamiltonian
structures. Moreover, we investigate recursion operators, higher Poisson brackets and
master symmetries.

1 Introduction

The purpose of this paper is to investigate the integrable systems constructed by Bogoyav-
lensky in 1988 [2, 3]. These systems are connected with simple Lie algebras and are
generalizations of the well known Volterra system. In particular, the Volterra system (also
known as the KM system) is related to the root system of a simple Lie algebra of type A,,.
This system and its Poisson structure is treated in detail in [10]. The equations of
motion are
dvi
dt
where vg = vp,41 = 0. These equations were studied originally by Volterra in [29] to
describe population evolution in a hierarchical system of competing individuals. The
importance of this system derives from the fact that it can be considered as a discrete
analogue of the Korteweg-de Vries equation. It is also associated with a lattice deformation
of the Virasoro algebra [11]. This system was solved by Kac and Van Moerbeke [18] using
a discrete version of inverse scattering. There is also an explicit solution by Moser in [21].
The integrability of the periodic KM system is considered in [13]. Finally, Damianou [5]
constructed Multi Hamiltonian structures and master symmetries for the system.
Equations (1.1) can be written as a Lax pair L = [B, L], where L is the Jacobi matrix

0 yor 0 - 0
VIO e
L= 0\/@‘

= v; (Vig1 — Vi-1) , 1=1,2,...,n, (1.1)

o |- (1.2)
: - 0 o,
0 -« 0 o, 0
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and

0 4/ U1U9 O
0 0 5/V203
0

N[ =

0
0
—3/0102
_%\/UQU?) 0 %,/Un_lvn
0 0 0 0
—%, /Up—1U, O
It follows that the functions H;, = %TrLZk are constants of motion.

We present the Poisson structure of the Volterra system following [5]. We denote by
m; the bracket of degree j. The bracket my is defined by

{visvig1} = — {vigr, vit = viviga, (1.3)

and all other brackets are zero. In this bracket the Hamiltonian is H; = Tr L2 and det L
is the Casimir.
The Poisson bracket 73 is defined by

{wi,vit1} = vivigr (Vi + vig1), {vi, viga} = vivig1viyo, (1.4)

and all other brackets are zero.
We assume that n is odd. In order to define the bracket m; we define the vector field

-~ 0
v, =S5 15
where f; is determined by
v2;
fi=-1, foi = — f2i—1, foic1 = —fai2 — 1, (1.6)
V2i—1

and we define m; = Ly, (m2). In this bracket the Hamiltonian is Hs and the Casimir
is H 1-

In [5] there is a construction of an infinite sequence of vector fields Y;,, for n > —1, and
an infinite sequence of Poisson brackets 7, n > 1, satisfying:

(i
(i

) m; are all Poisson.

) m;, m; are compatible for all 7, j.
(iii) The functions H; are in involution with respect to all of the ;.
(V) i (Hy) = (i + ) Hor;.

(v) Ly, (mj) = (i — j +2) migj.
(vi) mVH; = m_1VHjq.
)

Yi, X;] = (j — 1) Xi4j, where X; is the Hamiltonian vector field generated by H;
with respect to .

(vii
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In this paper we obtain similar results for the generalized Volterra systems of Bogoyav-
lensky.

We would like to comment on the relation between the Volterra systems in this paper
and the well known Toda systems generalized on simple Lie groups also by Bogoyavlen-
sky [1].

There is a transformation due to Hénon which maps the Bogoyavlensky—Volterra system
of type Aa, to the usual A, Toda lattice. The mapping is given by

1 1 .
@i = —5/V2iV2i—1, 1<i<n-1, b; = 3 (v2i—1 +v2i—2), 1<j<n. (1.7)

The equations satisfied by the new variables a;, b; are given by:
ai = a; (biy1 —bi), bi =2 (%2 - C%2—1) : (1.8)

These are precisely the equations for the finite nonperiodic Toda lattice. Note that the
number of variables for the Toda lattice is odd and this justifies our choice to consider the
KM system with an odd number of variables.

In order to generalize the Hénon correspondence from generalized Volterra to generali-
zed Toda it is necessary to work not with the original variables b; of Bogoyavlensky but
rather with some new variables v; which also appear in [2]. However, Bogoyavlensky did
not give a Lax pair for these systems in the variables v; and this is the main construction
of this paper.

The relation between the Volterra system of type Boy+1 (or Ca,41) and Toda By, (Cy,)
is due to Damianou and Fernandes [7], in 2002. The results of the present paper are
essential for the calculations in [7]. The connection between Volterra Dy,; and Toda D,,
is still an open problem. In any case, the multi-Hamiltonian structure for the Toda D,
system is a recent development and can be found in [§].

We have to point out that since the B,, Toda lattice involves only an even number of
variables it is natural to consider only Volterra Bg,11 systems with an even number of
variables. It is not a coincidence that we have obtained results only in this particular case.

In Section 2 we present the necessary background on Poisson manifolds, bi-Hamiltonian
systems and master symmetries.

In Section 3 we describe the construction of the systems. We obtain the Bogoyavlensky—
Volterra (BV) system for each simple Lie algebra G.

In Section 4 we investigate the BV system of type Bj,4+1. We find a Lax-pair (L, B) for
every n > 2. When n is even, we define two compatible brackets 71, w3 which define a recur-
sion operator R = mgm, 1. This recursion operator produces compatible Poisson brackets
T4l = RIm; and the constants of motion are in involution for every j = 1,2,3,....

In Section 5 we find master symmetries of the BV B, 1 system as well as the relations
which they satisfy. We do not present the analogous results for the C,11 system since it
is equivalent to the B, system.

In Section 6 we investigate the BV system of type D,.1. We find again a Lax pair
(L, B) for every n > 4 and, when n is odd, we define two compatible Poisson brackets 7y,
3. We also describe the Hamiltonian formulation and compute the Casimirs.



434 S P Kouzaris

2 Background

2.1 Poisson manifolds

We begin with a brief review of Poisson Manifolds. See for example [19, 30, 28].

Let M be a C° manifold and C*° (M) the space of C*° real valued functions on M.
A contravariant, antisymmetric tensor of order p will be called a p-tensor for short.

A manifold M with a bilinear map { , }: C* (M)xC> (M) — C* (M) which satisfies
the following conditions:

{f.9t=—{9. 1}, (skew-symmetry)
{f7 {97 h}} + {97 {h7 f}} + {h7 {f7 g}} =0, (JaCObi identitY)
{f,g-hy={f 9t -h+{f h} g (Leibniz rule)

is called a Poisson manifold. The bilinear form { , } is called Poisson bracket or Poisson
structure on M.

The Poisson bracket gives rise to a 2-tensor 7 such that {f,g} = (m,df A dg) where
(', ) is the pairing between the 2-tensors and the differential 2-forms. In local coordinates
(z1,22,...,2y), ™ is given by

0 0
re 3 ma (1)
1<i,j<n Oz; Oz,
and
_ B ~Of 9y
{f, 9} = (7, df Ndg) = Z %8_@8_1:]-’ (2.2)
1<4,5<n

where 7;; = {z;,z;}. Hence if we know the Poisson matrix m;; we know the bracket {f, g}
of two arbitrary functions as well.

The Poisson bracket allows one to associate a vector field to each element f € C*° (M) .
Leibniz’s rule implies that {f,-} is a derivation of C* (M). Therefore, for each f €
C> (M) there exists a well defined vector field Xy defined by the formula

Xy(9) ={f.9}- (2.3)

It is called Hamiltonian vector field generated by f. A nonconstant function f such that
X7 = 0is called a Casimir.

A symplectic manifold is a pair (M,w), where w is closed, nondegenerate 2-form. In
local coordinates (x1,...,z,) we have

w= szj (x) dx; A dx;. (2.4)
1]

The nondegeneracy condition means that there exists an inverse (skew-symmetric) mat-
rix wzgl, so the dimension of M is even. The condition for w to be closed (i.e. dw = 0) is

equivalent to the Jacobi identity for the tensor w™! (see [25]). Therefore we can define a
Poisson bracket by

{fug}:w(Xf’Xg)7 (25)

which is called the symplectic bracket.
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Let 71, mo two Poisson brackets on manifold M. The two brackets are called compatible
if 7 4 w9 is also Poisson. For example if 71 is Poisson and mo = Lxm; for some vector
field X then it is easy to prove that 71, mo are compatible; see [6]. If 7 is symplectic then
we can define a Recursion operator: It is the (1, 1)-tensor R defined by

R = momy . (2.6)

Recursion operators were introduced by Olver in [24].
A bi-Hamiltonian system is defined by specifying two Hamiltonian functions Hy, Hs
satisfying:

7T1VH2 :WQVHl. (27)

The notion of bi-Hamiltonian system is due to F Magri [20]. We have the following result,
see [9, 15]:

Suppose we have a bi-Hamiltonian system on a manifold M, whose first cohomology
group is trivial. Then there exists a hierarchy of mutually commuting functions Hy, Hs, ...
all in involution with respect to both brackets. They generate mutually commuting bi-
Hamiltonian flows X;, ¢ = 1,2, ... satisfying the Lenard recursion relations

XiJrj = WiVHj, (2'8)

where ;41 = Rim; are the higher order Poisson tensors.

2.2 Master symmetries

Master symmetries were introduced by Fokas and Fuchssteiner in [14]. For further details
on bi-Hamiltonian systems relevant to this paper see [12, 26, 27, 22]. The technique of
generating master symmetries for bi-Hamiltonian systems can be found in [16].

We recall the definition and basic properties of master symmetries following Fuchsstei-
ner [17].

Consider a differential equation on a manifold M

t=X(z). (2.9)
A vector field Y =Y (z) is a symmetry of (2.9) if

Y, X] = 0. (2.10)
The condition for Z to be a master symmetry is:

[Z,X],X] =0, and [Z,X] #0. (2.11)

We consider a bi-Hamiltonian system defined by the compatible Poisson tensors Jy, J; and
the Hamiltonians hg, h1. Assume that Jy is symplectic. We define the recursion operator
R = Ji1Jy !, the higher flows

X1 =R'Xy,  where X;=Jidhg= Jodhi, (2.12)
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and the higher order Poisson tensors
Jiy =Ry, i=1,2,.... (2.13)

Master symmetries preserve constants of motion, Hamiltonian vector fields and generate
hierarchies of Poisson structures. For a nondegenerate bi-Hamiltonian system, master
symmetries can be generated using a method due to W Oevel [23].

Theorem 1. Suppose that Zy is a conformal symmetry for both Jy, J1 and hg, i.e. for
some scalars a, B, and v we have

Lz, Jo = aJy, Lz, J1 = BJ1, Lz ho = vho. (2.14)
Then the vector fields

Z; = R'Zy, i=1,2,... (2.15)
are master symmetries, the J; are Poisson and they satisfy

(@) (2, X]=B+7+0—1)(B—a)) Xiyj,

(i) [Zi, Z5] = (B — ) (j — 1) Zixj,
(i4i) Lz, Jj = (B+(J—i—1) (B — ) Jiyj.

3 Definition of the systems

We consider the system

du; .
d—tz :ui(ui+1_ui71)) 1= 1,...,77/, (31)

where ug = upy1 = 0. This is the Volterra system, also known as the KM system and
is related to the root system of a simple Lie algebra of type A,+1. Bogoyavlensky con-
structed integrable dynamical systems connected with simple Lie algebras that generalize
the Volterra system. For more details see [2, 3].

We outline the construction of the systems:

Let G be a simple Lie algebra (rankG = n) and Il = {w; ws, ... ,w,} the Cartan-Weyl
basis of simple roots in G ([4]). There are unique positive integers k; such that

kowo + kiw1 + -+ - + kpw, =0, (3.2)

where kg = 1 and wy is the minimal negative root.
We consider the following Lax pairs:

L=[B, 1],
n

L(t)= Zbi (t) ew; + €wy + Z [ewi,ewj] ,
i=1 1<i<j<n

n

B(t) = Z} %ewi +eu,. (3.3)
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Let H be a Cartan subalgebra of G. For every root w, € H* there is a unique H,,, € H
such that w (h) = k (H,,,h) ¥V h € H, where k is the Killing form and H* is the dual space
of H. We also have an inner product on H* such that (we,ws) = k (Hy,, Hy,). We set

1 if (wj,w;)#0 and @< j,
Cij = 0 if <wi,wj> =0 or = j, (34)
-1 if (wij,wj) #0 and > j.

The vector equation (3.3) is equivalent to the dynamical system

n

. kici
bi:—Z—Jb‘J. (3:5)
j=1

We determine the skew-symmetric variables
xij = Cijbl-_lbj_l, iji = —a:ij, .%'jj = O, (3.6)

which correspond to the edges of the Dynkin diagram for the Lie algebra G, connecting
the vertices w; and wj.
The dynamical system (3.5) in the variables x;; takes the form

n
Tij = Ty Z ks (is + 2js) - (3.7)
s=1

We recall that the vertices w;, w; of the Dynkin diagram are joined by edges only if
(wi,wj) # 0. Hence x;; = 0 if there are no edges connecting the vertices w; and w; of the
diagram. We call the equations (3.7) Bogoyavlensky—Volterra system associated with G
(BV system for short).

We shall now describe the BV system for each simple Lie algebra G. The number
of independent variables x;; (t) is equal to n — 1 and is one less than the number of
variables b; (t). We use the standard numeration of vertices of the Dynkin diagram and
define the variables uy, (t) = x;; (t) corresponding to the edges of the Dynkin diagram with
increasing order of the vertices (i < 7).

The phase space consists of variables u;, 1 <i <n — 1, with u; > 0.

An—|—1
w1 w2 w3 Wn, Wn+1

O Ul O Ug O OU—O

n

wop = — (w1 + w2+ wny1)
ki=1, i=1,...,n+1 (BY Any1)
0, |Z_]|7é17 UL = UTU
Cij = 1, j=i+l, Uy = —Up—1Up
—Log=i-l Uy = ui(Uit1 — Ui—1)
2<1<n-1

_ _ 1 s
Ui = Tiipl = g L= Leoon



438 S P Kouzaris
Bt
w1 w2 w3 Wn, Wnt1
O U1 O U2 O O%O
wo = — (w1 + 2wy + -+ + 2wpi1)
ki=1k=2 i=2..,n+1 (BY Bus )
0, |i—jl#1, U1 = uy (u1 + 2us)
Cij = 1, j=1i+1, Uy = ug (2uz — uq)
-1, j =7—1 Up = —2Up_1Unp
Ui = 2ui(Uip1 — ui—1)
ui:xi,i—l—lzﬁ, 1=1,...,n 3<i<n-1
Cn+1
w1 w2 w3 Wn, Wnt1
O—O——7% 0 O——0
WOZ—(2w1++2wn+wn+1)
ki=2,i=1,...n, kn1=1 (M)
0, |i—j[#1, U1 = 2ugug
Cij = 17 .7 =1+ 1, un—l = Un—l(un — 2un_2)
U = 2ui(Ujp1 — Ui—1)
ui:xi,iﬁ-l:ﬁ,i:l,...,n 2<1<n—-2
Dy
w1 w2 ws

wo = — (w1 +2w2 + -+ 4+ 2wp_1 + Wy + Wny1)
ki=1Lkyo=1kp1=1k=22<i<n-1

1, 2<j=i+1<n,
Cii = —Ci; = O’ (i’j):(n’n+1)v
YO 0, 3<i42< <,
1, (4,5)=Mm—-1,n+1)
Ui = Tiitl = pp 0 V= Lio.oyn—=1,up =2p-1pn41 = b 1bngt

?lz = U9 (2U3 — ul) s

(BV Dpy1)
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U = ui(Uig1 —ui—1), 3<i<n—3, Up_2=uUp_2(Up+ Up_1 — 2Up_3),
Up—1 = Up—1 (un — Unp—-1 — 2un—2) y Up = —Up (un — Up-1+ 2un—2) .

wo = — (w1 + 2ws + 2w3 + 3wy + 2ws + we)

Eg
w1 w3 Wy w5 we
O— OO O———90
Uug
w2
U = u1(3U3 + ul), Uy = U2(2U4 — 2usz + UQ), (BV Eﬁ)
7:L3 = U3(QU4 + uz — QZLQ — ul), 714 = U4(U5 — Ugq — 271,3 — 271,2),
Uz = —U5(U5 + 3U4).
Er wo = —(2w1 4 2wy + 3ws + 4wy + 3ws + 2ws + wr)
w1 w3 Wy w5 we w7
O——O——O——O——O——0
Uug
w2
U = u1(4u3 + ul), Uy = u2(3U4 —3usz + 2U2), (BV E7)
Uz = U3(3U4 + ugz — 2ug — 2u1), Uy = U4(QU5 —uy — 3ug — 2UQ),
Uz = u5(u6 — Us — 4U4), Ug = —u6<3U5 + uﬁ).
Eg wo = —(2w1 + 3wa + dws + 6wy + bws + dws + w7 + 2ws)
w1 w3 w4 w5 we wr ws
O ) ) ) ) ) O
up ~ ug ug M us ~ ug Uy
uz
W BV Eg
UL = 2'LL1(3U3 + Ul), Ug = UQ(5'LL4 —4ug + 3U2), (BV Es)
Uz = ’U,3(5U4 + 2uz — 3ug — 2u1), Uy = U4(4U5 —uy — 4dug — 3UQ),
115 = u5(3u6 — Uus — GU4), ?:66 = u6(2u7 — Ug — 5U5), 1l7 = —U7(4u6 + U7).

F4 wo = —(2w1 + 3wa + dws + 2wy)

UL = U1(4’UQ + U1), Ug = UQ(QU3 + ug — 2U1), Uz = —U3(2U3 + 3’LL2). (BV F4)



440 S P Kouzaris

Go wo = — (3w + 2ws)
w1 w2
C==7=0
i = —uj (BV G»)

Note that the systems (3.7) and the BV system for every simple Lie algebra G are special
cases of the corresponding periodic systems which were constructed by Bogoyavlensky ([2],
Section 7), when

Hij = Cij, HE,0 = MOk = 07 1 < Z?] < n, 0 < k < n, (38)
b(] = 1, ug = 0.

In this paper we restrict our attention to the Bogoyavlensky—Volterra systems associ-
ated with the classical Lie algebras.

4 The Bogoyavlensky—Volterra B,, system
and its Poisson bracket

In this section we investigate the BV B, ;1 system. We find a Lax-pair (L, B) for every
n > 2. When n is even, we define two brackets my, m3 which define a recursion operator
R = m3m| 1 so that the Poisson brackets Toj41 = Rim, are compatible and the constants
of motion are in involution in each bracket mg;j41.
Recall the BV B, 11 system (u; > 0)
iLl = Ul (U1 + 211,2) s
'I:LQ = U9 (2U3 — ul) N
ai:2ui(ui+1—ui_1), i:3,...,n—1,
Uy, = —2Up—1Up,- (4.1)
We rescale the coordinates
v1 = U1, v; = 2u,, 1=2,...,n, (4.2)
to obtain the equivalent system
01 = v1 (v1 + v2),
ﬁizvi(viJrl_’Uifl)a i:27"'7n_1>

Vp = —Up—1Vn.- (4.3)

Before giving the Lax pair for the system (4.3) we introduce some matrix notations:

(4 ) e-(0h)
(\/m 0 >’ yozi( 0 Ul). (4.4)
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It turns out the equations (4.3) are equivalent to the Lax pair L = [L, B], where L, B
are (n+ 1) x (n + 1) matrices

[0 0 -+ 0 o iy ]
0 o X, O - O
I — X, O : ’
0 o . . X3 O
Non : X5 O X
| iyor O O X, O |
[0 0 -3y —3yoz 0 0 |
O O Y, @) O
o o0 O
B= 0 ~Y,-1 O O Y, @) (4.5)
N o . O Y O
/U102 : B 71 O O O Y,
0 : O ~Ys3 O O O
I 0 o) o) Y, 9] Yo_

We note that the elements of the matrices L, B are the 2 x 2 matrices X;, Y; and O except
for the elements of the first row and the first column which are scalars.

The functions Hyj, = i Tr (L*), k = 1,2, ... are constants of motion for the system.
We use the old variables b; appearing in the equations (3.5) in order to find a cubic
bracket 73 for the system. The equations (3.5) in the case of the Lie algebra B,, 1 become

by =231, by = —2b3' + b7,

b = —2 (bj—jl _ bj—jl> . =3,...n bper =2b7L (4.6)

The dynamical system (4.6) can be written in Hamiltonian form b; = {b;, H}, with
n+1
Hamiltonian H =logb; + 2 ) logb; and a constant Poisson bracket
j=2

{bj,bj41} = —{bj4+1,b;} =1, for j=1,2,...,n. (4.7)

-1

All other brackets are zero. In terms of the variables v; (v1 = bflbgl, v = 2b];1bk+l,

k=2,...,n) the above skew-symmetry bracket, which we denote by 73, is given by

{v1,v2} = viv2 (201 + v2),
{vi,viz1} = vivig1 (Vi +vip1), 1=2,...,n—1,

{Uz‘, Ui+2} = VjVj4+1Vi42, 1= 1, ey — 2, (4.8)

and all other brackets are zero.
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Suppose that n is even (n = 2[) and we look for a bracket 7; which satisfies
7T3VH2 = 7T1VH4.

We define the skew-symmetric matrix

1 1 1 1
O =3 —% ~w T
1 1 1 1
w0 Tn o T Ty
1
v2
w=| 1 : 0o __1 1 , (4.9)
V1 Un—2 Un—2
1 1 1 0 !
V1 v2 Un—2 Un—1
11 1 1 0
V1 v2 Un—2 Un—1

and we define 7 = w™! (i.e. {vj, v}, = (wil)ij).
Theorem 2. The brackets w1, w3 satisfy:
(i) w1, w3 are Poisson.

n
(i1) The function $1Hy = %Tr([fl) = > (307 +vi_1v;) is the Hamiltonian of the BV
i=2

Bp11 system with respect to the bracket .

(tit) 1, w3 are compatible.

Proof. (i) Changing variables in the Poisson tensor (4.7) preserves the Jacobi identity
and therefore 73 is a Poisson bracket.
In order to prove that 7 is a Poisson bracket we consider the 2-form

1< 1
i,7=1 1<i<j<n

Since the 2-form w is closed, (i.e. dw = 0), m; = w~! satisfies the Jacobi identity
(see [25], page 11) and therefore m; is Poisson.

(1) follows from simple calculations.

(731) It is well-known, see [6], that if a Poisson tensor is a Lie derivative of another,
then the two tensors are compatible. We will see later, in the next section, that w3 is
the Lie derivative of 7 in the direction of a master symmetry and this fact makes 7y, 73
compatible. |

Finally, we define a sequence of Poisson brackets mo;_1, j = 1,2,... which are compa-
tible and the constants of motion are in involution with respect to each m;_1. Since the
2-tensor 7 is invertible we can define the recursion operator R = m3m| 1 We define the
higher order Poisson tensors

Toj11 = RiT, j=1,2,.... (4.11)

Using standard theory of recursion operators [6, 20, 23] we obtain the following theorem.
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Theorem 3. The sequence of higher Poisson tensors and invariants satisfy:
(i) moj41VHo = moj_1VHaiyo, Vi, j.
(1) Ha; are in involution with respect to all Poisson brackets.

(149) w41 are all compatible Poisson brackets.

Remark. Since the functions Ho, Hy, ..., Hy; are independent and in involution the BV
By 1 system is integrable.

5 Master symmetries
of the Bogoyavlensky—Volterra B,, system

In this section we find master symmetries for the system (4.3) and derive the relations
which they satisfy.
We consider

n—1
0 0
73 = V102 (201 + 112) /\ - + E Vi1 (Vi + Vig1) 7—
802 > 0v; 8Ui+1
’L
n—2
DI
ViVi41Vi42 57—
200 T s
=2
1 n
T 1= E —;dvi A dvj, Hy = E (21}1»2 + 4vi_1vi) .
1<i<j<n ° i=2
The recursion operator is then
8
R = 3w, ! E ajidv; ® 90, (5.1)
,5=1
where
a1 = v (201 +va +v3), a1 = VU3,
V23
a3 = —v1 (2u1 + v2), Qo1 = (vo + v3 + v4),
2 2 .
Qi = U] + 07 + 20,10 + V041 + Vip1Vige, 1=2,3,...,m,
Q11 = V; (Ui+2+Ui+2UZ;1), 1=2,3,....,n—1,
QG j42 = —U; (’U/L'Jrl — 2212;1) s 1= 2, 3, e, — 2,
(Y 2 2 .
Qi1 = (vig1 +vig + i1 + vip1vise), 1=3,4,...,n,
Vi—1
(o 2 2 .
Q-2 = U—(UH_l —V;_1 — Vi—1V; + VUil + vi+1vi+2), 1=3,4,....n,
i—2
o 2 .
ij = — (Vg — V7| — VimaVi—1 — Vim0 + Vivig + Vip10it2), i—7>2,
j
Qyj = —2%;, j—1>2.

(We assume v, 11 = Upt2 = Upyg = -+ = 0.)
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We now prove that m; and w3 are compatible. It is enough to show that m3 = Lz m;
for some vector field Z;. We define

Z = R(Z) = Z%’dvj © 50 (Zo) = Zaijdvj (Zo) ® 75—

0 ov;
1,7 2y}
= Zaz‘j%‘% => Vi | 5o (5.2)
i, L= \j=1 !
where Zj is the Euler vector field
" 0
Zy = = 5.3
0 ; v 8’UZ' ( )
Using the formula
{9 nn = XA 9b —{, X(9)}r = {X (). 9}x (5.4)
it is easy to check that
Ly, (m) = —3ms, (5.5)

and therefore w3 is the Lie-derivative of 7 in the direction of the vector field Z;. This
makes 71 compatible with 73 and completes the proof of Theorem 2.
Using the recursion operator we generate the master symmetries

Z; = R'Zy. (5.6)
One calculates that
LZ() (7T1) = —T1, LZ() (7T3) = T3, LZO (HQ) = 2H2. (57)

Therefore Zj is a conformal symmetry for w1, w3, and Hs. The constants appearing in
Oevel’s Theorem are

oa=—1, B=1, v =2. (5.8)

We use the notation hg = Hs, Jg = 71, X1 = Jidhg = Jydh; and in general h; = Ho;4 9,
Jj =mojy1, Xi = R*1X,. Tt follows from Theorem 1 that the higher order Poisson tensors
satisfy the following deformation relations:

(@) [Zi, X5] = (1 +2j) Xity,
(i) [Zi,Z;] = 2(j — 1) Zisj,

(iii) Lz, Jj = (2] — 2i = 1)Jigj <= Lz, (moj41) = (2] — 20 — 1) T4 )11 (5.9)
We also have
Zi (Hy;) = 2 (i + j) Ha(isj)- (5.10)

We will not present the results for the BV C), 1 system. In fact the BV Cj, 11 system
is equivalent to the BV B, system through the transformation

UL — Up, U — Up_1, .voy Up_1— U, Up — Ul. (5.11)
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6 The Bogoyavlensky—Volterra D,, system
and its Poisson bracket

We recall the BV D,,1 1 system (u; > 0)

UL = Ul (U1 + 211,2) ,

'I:LQ = U9 (QU3 — ul) s

Uy = 2ui(Wip1 — Ui—1), i=3,...,n—3,
Up—2 = Un—2(Un + Un—1 — 2Up_3),

ﬂn_l = un_l(un — Up—1 — 2Un—2>

Up = —Up(Up — Up—1 + 2Up—2). (6.1)
We make a linear transformation
vl = U1, vi=2u;, 1=2,...n—2, Up—1 = Un_1, Up, = U, (6.2)
to obtain the equivalent system

01 = vy (v1 +v2),

0; = v (Vig1 — Vi—1), 1=2,...n—3,
Un—2 = Vn—2(Vp, + Up—1 — Vp_3),

Upn—1 = Up—1(Vn — Up—1 — Vn—2),

Up = —Up(Vp — Up—1 + Up—2). (6.3)

We consider again the 2 x 2 matrices which were defined in (4.4) and we also set

X_< \/m 1/Un, ) Y_1< v/ Un—2Un vV Un—2Un >
—/Un—1 1/Un—1 ’ 2 _\/Un—Qvn—l \/Un—ZUn—l ’

i 0 Up—1 — Up
W= (). (6.4)

Equations (6.3) can be written in a Lax Pair form L = [L, B], where

0 0 0 NIV
0 @) X @) @)
L = Xt O Xn_o 7
0 O X,_9 0]
VU1 : 0O X
| iy/u1 @) (@) Xs O |
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[0 0 -3z —3/om2 0 0 ]
O O Y O . 0
O W O Y3
B = 0 -Yt 0O O o : |. (6.5)
Vs O =Y,.3 - o Y O
Loy O 0 O Y
0 : O -V o O O
I 0 O O -Y, 10 Yo_

The invariant polynomials of this system are given by the functions

HQ,H4,...,Hn_1 when n is Odd7

Hy Hy,...,H, o5, H, 1 when n is even,

where Hy, = + Tr (L%*).

As in the case of the BV B,y system we use the variables b;, 1 < j < n + 1 of the
equations (3.5) in order to find a cubic bracket 73 of the BV D;,;1 system. The dynamical
system (3.5) in the case of the Lie algebra of type D, 1 can be written in Hamiltonian
form b; = {b;, H}, with Hamiltonian

n—1
H =logby +2 Z log b; + log by, + log by 41, (6.6)
j=2

and Poisson bracket

{bj,bjs1} = —{bj+1,b;} =1 for j=1,2,...,n—1,

{bn—h bn+1} = - {bn+1; bn—l} = 17 (67)
all other brackets are zero. In the new variables v; (v; = b;lbgl, v = 2b,;1b,;l1, k =
2,....n—2, Up_1 = b;ilbfll, Vp = b;}lb;il) the above skew-symmetric bracket, which

we denote by 73, is given by

{v1,v2} = v1v2 (201 + v2),
{vi, vig1} = vivigr (Vi + vig1) 1=2,...,n—3,
{Un—Qa Un—l} = Unp—2Un—1 (2Un_1 + vn—?) s

{Un—h Un} = 2vn—lvn (Un - Un—l) 5

{vi, vige} = vivig1vigoe, it=1,...,n—3,
{Un—Qa Un} = Un—2Un (Un—2 + 2Un) )
{Un737 Un} = Un—3Un—2Un. (68)

All other brackets are zero. As in the case of KM system we suppose that n is odd
(n =20+ 1) and we look again for a bracket 7 which satisfies 73V Hy = 71V Hy.
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We define
Jj—1
V2k+1 . .
Tij = —Tji = V2i-1 H for @ <j, Tii = V2i—1, (6.9)
L U2k
=3
and we let m; be the bracket which is defined as follows:
itj—1 .
vi,vi} = (—1 Tr 1 for 1<i<ji<n-—2
to v = U™ g a2 si<jsn-2
Vi, Upn—1} = {vi,vp} = ——— s for i=1,...,n—2
{vi, vn—1} = {vi, vn} 5 Ti]+[z] e ;
{Unfla Un} = - {Una Unfl} = 5 (Un - Unfl) . (610)
To illustrate, we give the Poisson matrix of the bracket 7 in the case n =7
_ ) 1 -
0 Tin —Ti2  Ti2  —Ti3 5713 5T13
_ 0 _ _1 _1
Ti1 T22 T22  T23 5723 5723
_ 0 _ 1 1
T12 T2 T22 T23 5723 5723
— — _ 0 _1 _1
M = T2 T22 T22 733 5733 5733
_ _ 0 1 1
T13 T23  T23 733 5733 5733
1 1 1 1 1 1
—5T13 5723 —35723 5733 —5733 0 5 (v7 — vg)
1 1 1 1 1 1
| —57T13 3723 —3T23 5733 —3733 —3 (V7 — Vg) 0
[0 v _vivs  Vivs  _ V1v3Vs  V1UsVs  U1v3vs
1 Vg v V4 20204 2v2v4
_ _ v3Us _v3vs  __V3vs
U1 0 U3 U3 V4 204 2v4
v1vs _ __v3vs v3vUs Vs
Vo v3 0 U3 V4 204 2v4
— __vivs _ _ U5 _ Y
= Vo V3 V3 0 (%3 2 3
vivavs  _ v3vs  v3vs vs vs
V4 v4 v4 Us 0 2 2
_ v1V3Vs V35 __ v3s U5 _wvs 0 V7 —Vg
20204 204 204 2 2 2
__ V19305 V35 __V3v5 U5 __ U5 __ V77—V O
20904 204 204 2 2 2 J
We obtain the following Theorem:
Theorem 4. (i) w1, 73 are Poisson.
(it) The function
n—2 n—2
1 1 A 152,
ZHZ = g Tr (L ) = Up—9Un + 201Uy + E ViVi4+1 + 5 )

=1 =2
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is the Hamiltonian of the BV Dy, 41 system with respect to the bracket my.
(1i1) The function

n—2

H = (Un - Unfl) H Vi,

i=1
is the Casimir of the BV Dy 41 system in the bracket .

(1v) 71, w3 are compatible.

Proof. (i) We denote { }, the bracket 71 of Dy,11 and { }, the Poisson bracket m of By,
(n=20+1). Then { }, can be defined as follows:

{Ui,vj}d:{vi,vj}b, 1<4,j<n~-2,
{vi,vn—1}y = {vi, v}, = %{fui,vn_l}b, 1<i<n-—2,
{vn—1,vn}, = % (v, — Up—1) -

We set

[Ui,vjavk] = {v;, {UjWk}} + {Uj, {vk, vit} + {vk, {vi, Uj}}~
Fori,j,k=1,2,...,n—2
[Vi, v, Vkla = [Vi, vj, vE]p = 0.

Fori,j=1,2,....,.n—2

[Vi, Vj, Vn—1]a = [Vi, Vj, Un)d = 5[% v, Un—1]p = 0.

Fori=1,2,...,n—2

[Vi, Un—1,Vn]a = {vi, {vn—1,Vn}ata + {vn—1,{vn,vi}a}td + {vn, {vi, vn-1}a}a

1 1 1
= 5{% Up, — Un—1}d + 5{%-1, {vn—1,vi}p}a + §{Um {vi,vn—1}b}d

1 1 1
= Q{Ui,vnq — Up—1}b — Z{Unfly {vi,vn—1}p}p + Z{’L)nfla {vi, vn—1}p}e
=0.

Therefore, { }4 is Poisson. Relation (6.7) implies that 73 is Poisson as well.

(44), (i13) follow from simple calculations.

(iv) The proof that the bracket 7 + 73 is Poisson is similar to the above proof that
the { }4 is Poisson. [ |

Remark. Since the functions Hs, Hy, . .., Ho;, H are independent and in involution the BV
Dy system is integrable.
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