
Journal of Nonlinear Mathematical Physics Volume 10, Number 4 (2003), 431–450 Article

Multiple Hamiltonian Structures and Lax Pairs

for Bogoyavlensky–Volterra Systems

Stelios P KOUZARIS

Department of Mathematics and Statistics, The University of Cyprus,
P.O. Box 537, Nicosia, Cyprus

Received November 25, 2002; Accepted March 06, 2003

Abstract

Results on the Volterra model which is associated to the simple Lie algebra of type An

are extended to the Bogoyavlensky–Volterra systems of type Bn, Cn and Dn. In par-
ticular we find Lax pairs, Hamiltonian and Casimir functions and multi-Hamiltonian
structures. Moreover, we investigate recursion operators, higher Poisson brackets and
master symmetries.

1 Introduction

The purpose of this paper is to investigate the integrable systems constructed by Bogoyav-
lensky in 1988 [2, 3]. These systems are connected with simple Lie algebras and are
generalizations of the well known Volterra system. In particular, the Volterra system (also
known as the KM system) is related to the root system of a simple Lie algebra of type An.

This system and its Poisson structure is treated in detail in [10]. The equations of
motion are

dvi

dt
= vi (vi+1 − vi−1) , i = 1, 2, . . . , n, (1.1)

where v0 = vn+1 = 0. These equations were studied originally by Volterra in [29] to
describe population evolution in a hierarchical system of competing individuals. The
importance of this system derives from the fact that it can be considered as a discrete
analogue of the Korteweg-de Vries equation. It is also associated with a lattice deformation
of the Virasoro algebra [11]. This system was solved by Kac and Van Moerbeke [18] using
a discrete version of inverse scattering. There is also an explicit solution by Moser in [21].
The integrability of the periodic KM system is considered in [13]. Finally, Damianou [5]
constructed Multi Hamiltonian structures and master symmetries for the system.

Equations (1.1) can be written as a Lax pair L̇ = [B,L], where L is the Jacobi matrix

L =




0
√
v1 0 · · · 0

√
v1 0

√
v2

. . .
...

0
√
v2

. . . . . . 0
...

. . . . . . 0
√
vn

0 · · · 0
√
vn 0



, (1.2)
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and

B =




0 0 1
2

√
v1v2 0

0 0 0 1
2

√
v2v3

−1
2

√
v1v2 0

. . . . . . . . .

−1
2

√
v2v3

. . . . . . 0 1
2

√
vn−1vn

0 . . . 0 0 0
−1

2

√
vn−1vn 0 0



.

It follows that the functions Hk = 1
k TrL2k are constants of motion.

We present the Poisson structure of the Volterra system following [5]. We denote by
πj the bracket of degree j. The bracket π2 is defined by

{vi, vi+1} = −{vi+1, vi} = vivi+1, (1.3)

and all other brackets are zero. In this bracket the Hamiltonian is H1 = TrL2 and detL
is the Casimir.

The Poisson bracket π3 is defined by

{vi, vi+1} = vivi+1(vi + vi+1), {vi, vi+2} = vivi+1vi+2, (1.4)

and all other brackets are zero.
We assume that n is odd. In order to define the bracket π1 we define the vector field

Y−1 =
n∑

i=1

fi
∂

∂vi
, (1.5)

where fi is determined by

f1 = −1, f2i = − v2i

v2i−1
f2i−1, f2i−1 = −f2i−2 − 1, (1.6)

and we define π1 = LY−1 (π2). In this bracket the Hamiltonian is H2 and the Casimir
is H1.

In [5] there is a construction of an infinite sequence of vector fields Yn, for n ≥ −1, and
an infinite sequence of Poisson brackets πn, n ≥ 1, satisfying:

(i) πj are all Poisson.

(ii) πi, πj are compatible for all i, j.

(iii) The functions Hj are in involution with respect to all of the πi.

(iv) Yi (Hj) = (i+ j)Hi+j .

(v) LYi (πj) = (i− j + 2)πi+j .

(vi) πi∇Hj = πi−1∇Hj+1.

(vii) [Yi, Xj ] = (j − 1)Xi+j , where Xj is the Hamiltonian vector field generated by Hj

with respect to π1.



Bogoyavlensky–Volterra Systems 433

In this paper we obtain similar results for the generalized Volterra systems of Bogoyav-
lensky.

We would like to comment on the relation between the Volterra systems in this paper
and the well known Toda systems generalized on simple Lie groups also by Bogoyavlen-
sky [1].

There is a transformation due to Hénon which maps the Bogoyavlensky–Volterra system
of type A2n to the usual An Toda lattice. The mapping is given by

ai = −1
2
√
v2iv2i−1, 1 ≤ i ≤ n− 1, bi =

1
2

(v2i−1 + v2i−2) , 1 ≤ j ≤ n. (1.7)

The equations satisfied by the new variables ai, bj are given by:

ȧi = ai (bi+1 − bi) , ḃi = 2
(
a2

i − a2
i−1

)
. (1.8)

These are precisely the equations for the finite nonperiodic Toda lattice. Note that the
number of variables for the Toda lattice is odd and this justifies our choice to consider the
KM system with an odd number of variables.

In order to generalize the Hénon correspondence from generalized Volterra to generali-
zed Toda it is necessary to work not with the original variables bj of Bogoyavlensky but
rather with some new variables vj which also appear in [2]. However, Bogoyavlensky did
not give a Lax pair for these systems in the variables vj and this is the main construction
of this paper.

The relation between the Volterra system of type B2n+1 (or C2n+1) and Toda Bn (Cn)
is due to Damianou and Fernandes [7], in 2002. The results of the present paper are
essential for the calculations in [7]. The connection between Volterra D2n+1 and Toda Dn

is still an open problem. In any case, the multi-Hamiltonian structure for the Toda Dn

system is a recent development and can be found in [8].
We have to point out that since the Bn Toda lattice involves only an even number of

variables it is natural to consider only Volterra B2n+1 systems with an even number of
variables. It is not a coincidence that we have obtained results only in this particular case.

In Section 2 we present the necessary background on Poisson manifolds, bi-Hamiltonian
systems and master symmetries.

In Section 3 we describe the construction of the systems. We obtain the Bogoyavlensky–
Volterra (BV) system for each simple Lie algebra G.

In Section 4 we investigate the BV system of type Bn+1. We find a Lax-pair (L,B) for
every n ≥ 2.When n is even, we define two compatible brackets π1, π3 which define a recur-
sion operator R = π3π

−1
1 . This recursion operator produces compatible Poisson brackets

π2j+1 = Rjπ1 and the constants of motion are in involution for every j = 1, 2, 3, . . ..
In Section 5 we find master symmetries of the BV Bn+1 system as well as the relations

which they satisfy. We do not present the analogous results for the Cn+1 system since it
is equivalent to the Bn+1 system.

In Section 6 we investigate the BV system of type Dn+1. We find again a Lax pair
(L,B) for every n ≥ 4 and, when n is odd, we define two compatible Poisson brackets π1,
π3. We also describe the Hamiltonian formulation and compute the Casimirs.
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2 Background

2.1 Poisson manifolds

We begin with a brief review of Poisson Manifolds. See for example [19, 30, 28].
Let M be a C∞ manifold and C∞ (M) the space of C∞ real valued functions on M.

A contravariant, antisymmetric tensor of order p will be called a p-tensor for short.
A manifold M with a bilinear map { , } : C∞ (M)×C∞ (M) → C∞ (M) which satisfies

the following conditions:

{f, g} = −{g, f} , (skew-symmetry)
{f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0, (Jacobi identity)
{f, g · h} = {f, g} · h+ {f, h} · g (Leibniz rule)

is called a Poisson manifold. The bilinear form { , } is called Poisson bracket or Poisson
structure on M.

The Poisson bracket gives rise to a 2-tensor π such that {f, g} = 〈π, df ∧ dg〉 where
〈 , 〉 is the pairing between the 2-tensors and the differential 2-forms. In local coordinates
(x1, x2, . . . , xn), π is given by

π =
∑

1≤i,j≤n

πij
∂

∂xi
∧ ∂

∂xj
, (2.1)

and

{f, g} = 〈π, df ∧ dg〉 =
∑

1≤i,j≤n

πij
∂f

∂xi

∂g

∂xj
, (2.2)

where πij = {xi, xj}. Hence if we know the Poisson matrix πij we know the bracket {f, g}
of two arbitrary functions as well.

The Poisson bracket allows one to associate a vector field to each element f ∈ C∞ (M) .
Leibniz’s rule implies that {f, ·} is a derivation of C∞ (M) . Therefore, for each f ∈
C∞ (M) there exists a well defined vector field Xf defined by the formula

Xf (g) = {f, g} . (2.3)

It is called Hamiltonian vector field generated by f . A nonconstant function f such that
Xf = 0 is called a Casimir.

A symplectic manifold is a pair (M,ω), where ω is closed, nondegenerate 2-form. In
local coordinates (x1, . . . , xn) we have

ω =
∑
i,j

ωij (x) dxi ∧ dxj . (2.4)

The nondegeneracy condition means that there exists an inverse (skew-symmetric) mat-
rix ω−1

ij , so the dimension of M is even. The condition for ω to be closed (i.e. dω = 0) is
equivalent to the Jacobi identity for the tensor ω−1 (see [25]). Therefore we can define a
Poisson bracket by

{f, g} = ω (Xf , Xg) , (2.5)

which is called the symplectic bracket.
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Let π1, π2 two Poisson brackets on manifold M . The two brackets are called compatible
if π1 + π2 is also Poisson. For example if π1 is Poisson and π2 = LXπ1 for some vector
field X then it is easy to prove that π1, π2 are compatible; see [6]. If π1 is symplectic then
we can define a Recursion operator: It is the (1, 1)-tensor R defined by

R = π2π
−1
1 . (2.6)

Recursion operators were introduced by Olver in [24].
A bi-Hamiltonian system is defined by specifying two Hamiltonian functions H1, H2

satisfying:

π1∇H2 = π2∇H1. (2.7)

The notion of bi-Hamiltonian system is due to F Magri [20]. We have the following result,
see [9, 15]:

Suppose we have a bi-Hamiltonian system on a manifold M , whose first cohomology
group is trivial. Then there exists a hierarchy of mutually commuting functions H1, H2, . . .
all in involution with respect to both brackets. They generate mutually commuting bi-
Hamiltonian flows Xi, i = 1, 2, . . . satisfying the Lenard recursion relations

Xi+j = πi∇Hj , (2.8)

where πi+1 = Riπ1 are the higher order Poisson tensors.

2.2 Master symmetries

Master symmetries were introduced by Fokas and Fuchssteiner in [14]. For further details
on bi-Hamiltonian systems relevant to this paper see [12, 26, 27, 22]. The technique of
generating master symmetries for bi-Hamiltonian systems can be found in [16].

We recall the definition and basic properties of master symmetries following Fuchsstei-
ner [17].

Consider a differential equation on a manifold M

ẋ = X (x) . (2.9)

A vector field Y = Y (x) is a symmetry of (2.9) if

[Y,X] = 0. (2.10)

The condition for Z to be a master symmetry is:

[[Z,X] , X] = 0, and [Z,X] �= 0. (2.11)

We consider a bi-Hamiltonian system defined by the compatible Poisson tensors J0, J1 and
the Hamiltonians h0, h1. Assume that J0 is symplectic. We define the recursion operator
R = J1J

−1
0 , the higher flows

Xi+1 = RiX1, where X1 = J1dh0 = J0dh1, (2.12)
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and the higher order Poisson tensors

Ji = RiJ0, i = 1, 2, . . . . (2.13)

Master symmetries preserve constants of motion, Hamiltonian vector fields and generate
hierarchies of Poisson structures. For a nondegenerate bi-Hamiltonian system, master
symmetries can be generated using a method due to W Oevel [23].

Theorem 1. Suppose that Z0 is a conformal symmetry for both J0, J1 and h0, i.e. for
some scalars α, β, and γ we have

LZ0J0 = αJ0, LZ0J1 = βJ1, LZ0h0 = γh0. (2.14)

Then the vector fields

Zi = RiZ0, i = 1, 2, . . . (2.15)

are master symmetries, the Ji are Poisson and they satisfy

(i) [Zi, Xj ] = (β + γ + (j − 1) (β − α))Xi+j ,

(ii) [Zi, Zj ] = (β − α) (j − i)Zi+j ,

(iii) LZiJj = (β + (j − i− 1) (β − α))Ji+j .

3 Definition of the systems

We consider the system

dui

dt
= ui(ui+1 − ui−1), i = 1, . . . , n, (3.1)

where u0 = un+1 = 0. This is the Volterra system, also known as the KM system and
is related to the root system of a simple Lie algebra of type An+1. Bogoyavlensky con-
structed integrable dynamical systems connected with simple Lie algebras that generalize
the Volterra system. For more details see [2, 3].

We outline the construction of the systems:
Let G be a simple Lie algebra (rankG = n) and Π = {ω1,ω2, . . . , ωn} the Cartan–Weyl

basis of simple roots in G ([4]). There are unique positive integers ki such that

k0ω0 + k1ω1 + · · · + knωn = 0, (3.2)

where k0 = 1 and ω0 is the minimal negative root.
We consider the following Lax pairs:

L̇ = [B,L] ,

L (t) =
n∑

i=1

bi (t) eωi + eω0 +
∑

1≤i<j≤n

[
eωi , eωj

]
,

B (t) =
n∑

i=1

ki

bi (t)
e−ωi + e−ω0 . (3.3)
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Let H be a Cartan subalgebra of G. For every root ωa ∈ H∗ there is a unique Hωa ∈ H
such that ω (h) = k (Hωa , h) ∀ h ∈ H, where k is the Killing form and H∗ is the dual space
of H. We also have an inner product on H∗ such that 〈ωa, ωb〉 = k (Hωa , Hωb

). We set

cij =




1 if 〈ωi, ωj〉 �= 0 and i < j,
0 if 〈ωi, ωj〉 = 0 or i = j,

−1 if 〈ωi, ωj〉 �= 0 and i > j.
(3.4)

The vector equation (3.3) is equivalent to the dynamical system

ḃi = −
n∑

j=1

kjcij
bj

. (3.5)

We determine the skew-symmetric variables

xij = cijb
−1
i b−1

j , xji = −xij , xjj = 0, (3.6)

which correspond to the edges of the Dynkin diagram for the Lie algebra G, connecting
the vertices ωi and ωj .

The dynamical system (3.5) in the variables xij takes the form

ẋij = xij

n∑
s=1

ks (xis + xjs) . (3.7)

We recall that the vertices ωi, ωj of the Dynkin diagram are joined by edges only if
〈ωi, ωj〉 �= 0. Hence xij = 0 if there are no edges connecting the vertices ωi and ωj of the
diagram. We call the equations (3.7) Bogoyavlensky–Volterra system associated with G
(BV system for short).

We shall now describe the BV system for each simple Lie algebra G. The number
of independent variables xij (t) is equal to n − 1 and is one less than the number of
variables bj (t). We use the standard numeration of vertices of the Dynkin diagram and
define the variables uk (t) = xij (t) corresponding to the edges of the Dynkin diagram with
increasing order of the vertices (i < j) .

The phase space consists of variables ui, 1 ≤ i ≤ n− 1, with ui > 0.

✐ ✐ ✐ ✐ ✐
ω1 ω2 ω3 ωn ωn+1

u1 u2 un
. . .

An+1

ω0 = − (ω1 + ω2 + · · ·ωn+1)
ki = 1, i = 1, . . . , n+ 1

cij =




0, |i− j| �= 1,
1, j = i+ 1,

−1, j = i− 1

ui = xi,i+1 = 1
bibi+1

, i = 1, . . . , n

(
BV An+1

)

u̇1 = u1u2

u̇n = −un−1un

u̇i = ui(ui+1 − ui−1)
2 ≤ i ≤ n− 1
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✐ ✐ ✐ ✐ ✐
ω1 ω2 ω3 ωn ωn+1

u1 u2 un
. . .

Bn+1

�

ω0 = − (ω1 + 2ω2 + · · · + 2ωn+1)
k1 = 1, ki = 2, i = 2, . . . , n+ 1

cij =




0, |i− j| �= 1,
1, j = i+ 1,

−1, j = i− 1

ui = xi,i+1 = 1
bibi+1

, i = 1, . . . , n

(
BV Bn+1

)

u̇1 = u1 (u1 + 2u2)
u̇2 = u2 (2u3 − u1)
u̇n = −2un−1un

u̇i = 2ui(ui+1 − ui−1)
3 ≤ i ≤ n− 1

✐ ✐ ✐ ✐ ✐
ω1 ω2 ω3 ωn ωn+1

u1 u2 un
. . .

Cn+1

�

ω0 = − (2ω1 + · · · + 2ωn + ωn+1)
ki = 2 , i = 1, . . . , n, kn+1 = 1

cij =




0, |i− j| �= 1,
1, j = i+ 1,

−1, j = i− 1

ui = xi,i+1 = 1
bibi+1

, i = 1, . . . , n

(
BV Cn+1

)

u̇1 = 2u1u2

u̇n−1 = un−1(un − 2un−2)
u̇n = −un(un + 2un−1)
u̇i = 2ui(ui+1 − ui−1)
2 ≤ i ≤ n− 2

�
�

��

❅
❅

❅❅

✐ ✐ ✐ ✐ ✐

✐

✐

ω1 ω2 ω3 ωn−2
ωn−1u1 u2 un−2

. . .

Dn+1 ωn

ωn+1

un−1

un

ω0 = − (ω1 + 2ω2 + · · · + 2ωn−1 + ωn + ωn+1)
k1 = 1, kn = 1, kn+1 = 1, ki = 2, 2 ≤ i ≤ n− 1

cij = −cji =




1, 2 ≤ j = i+ 1 ≤ n,
0 , (i, j) = (n, n+ 1),
0, 3 ≤ i+ 2 ≤ j ≤ n,
1, (i, j) = (n− 1, n+ 1)

ui = xi,i+1 = 1
bibi+1

, i = 1, . . . , n− 1, un = xn−1,n+1 = 1
bn−1bn+1

u̇1 = u1 (2u2 + u1) , u̇2 = u2 (2u3 − u1) , (BV Dn+1 )
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u̇i = ui(ui+1 − ui−1), 3 ≤ i ≤ n− 3, u̇n−2 = un−2 (un + un−1 − 2un−3) ,
u̇n−1 = un−1 (un − un−1 − 2un−2) , u̇n = −un (un − un−1 + 2un−2) .

✐ ✐ ✐ ✐ ✐

✐

ω1 ω3 ω4 ω5 ω6

ω2

u1 u3 u4 u5

u2

E6 ω0 = −(ω1 + 2ω2 + 2ω3 + 3ω4 + 2ω5 + ω6)

u̇1 = u1(3u3 + u1), u̇2 = u2(2u4 − 2u3 + u2), (BV E6)
u̇3 = u3(2u4 + u3 − 2u2 − u1), u̇4 = u4(u5 − u4 − 2u3 − 2u2),
u̇5 = −u5(u5 + 3u4).

✐ ✐ ✐ ✐ ✐

✐

✐
ω1 ω3 ω4 ω5 ω6

ω2

ω7

u1 u3 u4 u5

u2

u6

E7 ω0 = −(2ω1 + 2ω2 + 3ω3 + 4ω4 + 3ω5 + 2ω6 + ω7)

u̇1 = u1(4u3 + u1), u̇2 = u2(3u4 − 3u3 + 2u2), (BV E7)
u̇3 = u3(3u4 + u3 − 2u2 − 2u1), u̇4 = u4(2u5 − u4 − 3u3 − 2u2),
u̇5 = u5(u6 − u5 − 4u4), u̇6 = −u6(3u5 + u6).

✐ ✐ ✐ ✐ ✐ ✐ ✐

✐

ω1 ω3 ω4 ω5 ω6

ω2

ω7 ω8

u1 u3 u4 u5

u2

u6 u7

E8 ω0 = −(2ω1 + 3ω2 + 4ω3 + 6ω4 + 5ω5 + 4ω6 + 3ω7 + 2ω8)

BV E8

u̇1 = 2u1(3u3 + u1), u̇2 = u2(5u4 − 4u3 + 3u2), (BV E8)
u̇3 = u3(5u4 + 2u3 − 3u2 − 2u1), u̇4 = u4(4u5 − u4 − 4u3 − 3u2),
u̇5 = u5(3u6 − u5 − 6u4), u̇6 = u6(2u7 − u6 − 5u5), u̇7 = −u7(4u6 + u7).

✐ ✐ ✐ ✐
ω1 ω2 ω3 ω4

u1 u2 u3

F4

�

ω0 = −(2ω1 + 3ω2 + 4ω3 + 2ω4)

u̇1 = u1(4u2 + u1), u̇2 = u2(2u3 + u2 − 2u1), u̇3 = −u3(2u3 + 3u2). (BV F4)
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✐ ✐
ω1 ω2

u2

G2

�

ω0 = −(3ω1 + 2ω2)

u̇1 = −u2
1 (BV G2)

Note that the systems (3.7) and the BV system for every simple Lie algebra G are special
cases of the corresponding periodic systems which were constructed by Bogoyavlensky ([2],
Section 7), when

µij = cij , µk,0 = µ0,k = 0, 1 ≤ i, j ≤ n, 0 ≤ k ≤ n, (3.8)
b0 = 1, u0 = 0.

In this paper we restrict our attention to the Bogoyavlensky–Volterra systems associ-
ated with the classical Lie algebras.

4 The Bogoyavlensky–Volterra Bn system
and its Poisson bracket

In this section we investigate the BV Bn+1 system. We find a Lax-pair (L,B) for every
n ≥ 2. When n is even, we define two brackets π1, π3 which define a recursion operator
R = π3π

−1
1 so that the Poisson brackets π2j+1 = Rjπ1 are compatible and the constants

of motion are in involution in each bracket π2j+1.
Recall the BV Bn+1 system (ui > 0)

u̇1 = u1 (u1 + 2u2) ,
u̇2 = u2 (2u3 − u1) ,
u̇i = 2ui(ui+1 − ui−1), i = 3, . . . , n− 1,
u̇n = −2un−1un. (4.1)

We rescale the coordinates

v1 = u1, vi = 2ui, i = 2, . . . , n, (4.2)

to obtain the equivalent system

v̇1 = v1 (v1 + v2) ,
v̇i = vi(vi+1 − vi−1), i = 2, . . . , n− 1,
v̇n = −vn−1vn. (4.3)

Before giving the Lax pair for the system (4.3) we introduce some matrix notations:

Xi =
( √

vi 0
0 i

√
vi

)
, O =

(
0 0
0 0

)
,

Yi =
1
2

( √
vivi+1 0
0 √

vivi+1

)
, Y0 =

i

2

(
0 v1

−v1 0

)
. (4.4)
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It turns out the equations (4.3) are equivalent to the Lax pair L̇ = [L,B], where L, B
are (n+ 1) × (n+ 1) matrices

L =




0 0 · · · 0
√
v1 i

√
v1

0 O Xn O · · · O
... Xn O

. . . . . .
...

0 O
. . . . . . X3 O

√
v1

...
. . . X3 O X2

i
√
v1 O · · · O X2 O




,

B =




0 · · · · · · 0 −1
2

√
v1v2 −1

2

√
v1v2 0 0

... O O Yn−1 O · · · · · · O

... O O O
. . . . . .

...

0 −Yn−1 O O
. . . Y4 O

...
1
2

√
v1v2 O

. . . . . . . . . O Y3 O

1
2

√
v1v2

...
. . . −Y4 O O O Y2

0
... O −Y3 O O O

0 O · · · · · · O −Y2 O Y0




. (4.5)

We note that the elements of the matrices L, B are the 2×2 matrices Xi, Yj and O except
for the elements of the first row and the first column which are scalars.

The functions H2k = 1
2k Tr (L4k), k = 1, 2, . . . are constants of motion for the system.

We use the old variables bj appearing in the equations (3.5) in order to find a cubic
bracket π3 for the system. The equations (3.5) in the case of the Lie algebra Bn+1 become

ḃ1 = −2b−1
2 , ḃ2 = −2b−1

3 + b−1
1 ,

ḃj = −2
(
b−1
j+1 − b−1

j−1

)
, j = 3, . . . , n, ḃn+1 = 2b−1

n . (4.6)

The dynamical system (4.6) can be written in Hamiltonian form ḃj = {bj , H}, with

Hamiltonian H = log b1 + 2
n+1∑
j=2

log bj and a constant Poisson bracket

{bj , bj+1} = −{bj+1, bj} = 1, for j = 1, 2, . . . , n. (4.7)

All other brackets are zero. In terms of the variables vj (v1 = b−1
1 b−1

2 , vk = 2b−1
k b−1

k+1,
k = 2, . . . , n) the above skew-symmetry bracket, which we denote by π3, is given by

{v1, v2} = v1v2 (2v1 + v2) ,
{vi, vi+1} = vivi+1 (vi + vi+1) , i = 2, . . . , n− 1,
{vi, vi+2} = vivi+1vi+2, i = 1, . . . , n− 2, (4.8)

and all other brackets are zero.
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Suppose that n is even (n = 2l) and we look for a bracket π1 which satisfies

π3∇H2 = π1∇H4.

We define the skew-symmetric matrix

ω =




0 − 1
v1

· · · − 1
v1

− 1
v1

− 1
v1

1
v1

0 − 1
v2

· · · − 1
v2

− 1
v2

... 1
v2

. . . . . .
...

...
1
v1

...
. . . 0 − 1

vn−2
− 1

vn−2

1
v1

1
v2

· · · 1
vn−2

0 − 1
vn−1

1
v1

1
v2

· · · 1
vn−2

1
vn−1

0




, (4.9)

and we define π1 = ω−1 (i.e. {vi, vj}π1
=

(
ω−1

)
ij
).

Theorem 2. The brackets π1, π3 satisfy:

(i) π1, π3 are Poisson.

(ii) The function 1
4H2 = 1

8 Tr (L4) =
n∑

i=2

(
1
2v

2
i + vi−1vi

)
is the Hamiltonian of the BV

Bn+1 system with respect to the bracket π1.

(iii) π1, π3 are compatible.

Proof. (i) Changing variables in the Poisson tensor (4.7) preserves the Jacobi identity
and therefore π3 is a Poisson bracket.

In order to prove that π1 is a Poisson bracket we consider the 2-form

ω =
1
2

n∑
i,j=1

ωijdvi ∧ dvj =
∑

1≤i<j≤n

− 1
vi
dvi ∧ dvj . (4.10)

Since the 2-form ω is closed, (i.e. dω = 0), π1 = ω−1 satisfies the Jacobi identity
(see [25], page 11) and therefore π1 is Poisson.

(ii) follows from simple calculations.
(iii) It is well-known, see [6], that if a Poisson tensor is a Lie derivative of another,

then the two tensors are compatible. We will see later, in the next section, that π3 is
the Lie derivative of π1 in the direction of a master symmetry and this fact makes π1, π3

compatible. �

Finally, we define a sequence of Poisson brackets π2j−1, j = 1, 2, . . . which are compa-
tible and the constants of motion are in involution with respect to each π2j−1. Since the
2-tensor π1 is invertible we can define the recursion operator R = π3π

−1
1 . We define the

higher order Poisson tensors

π2j+1 = Rjπ1, j = 1, 2, . . . . (4.11)

Using standard theory of recursion operators [6, 20, 23] we obtain the following theorem.
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Theorem 3. The sequence of higher Poisson tensors and invariants satisfy:

(i) π2j+1∇H2i = π2j−1∇H2i+2, ∀ i, j.
(ii) H2i are in involution with respect to all Poisson brackets.

(iii) π2j+1 are all compatible Poisson brackets.

Remark. Since the functions H2, H4, . . . , H2l are independent and in involution the BV
B2l+1 system is integrable.

5 Master symmetries
of the Bogoyavlensky–Volterra Bn system

In this section we find master symmetries for the system (4.3) and derive the relations
which they satisfy.

We consider

π3 = v1v2 (2v1 + v2)
∂

∂v1
∧ ∂

∂v2
+

n−1∑
i=2

vivi+1 (vi + vi+1)
∂

∂vi
∧ ∂

∂vi+1

+
n−2∑
i=2

vivi+1vi+2
∂

∂vi
∧ ∂

∂vi+2
,

π−1
1 =

∑
1≤i<j≤n

− 1
vi
dvi ∧ dvj , H2 =

n∑
i=2

(
2v2

i + 4vi−1vi

)
.

The recursion operator is then

R = π3π
−1
1 =

n∑
i,j=1

αijdvj ⊗ ∂

∂vi
, (5.1)

where

α11 = v2 (2v1 + v2 + v3) , α12 = v1v3,

α13 = −v1 (2v1 + v2) , α21 =
v2v3

v1
(v2 + v3 + v4) ,

αii = v2
i + v2

i+1 + 2vi−1vi + vivi+1 + vi+1vi+2, i = 2, 3, . . . , n,
αi,i+1 = vi (vi+2 + vi + 2vi−1) , i = 2, 3, . . . , n− 1,
αi,i+2 = −vi (vi+1 − 2vi−1) , i = 2, 3, . . . , n− 2,

αi,i−1 =
vi

vi−1
(v2

i+1 + v2
i−1 + vivi+1 + vi+1vi+2), i = 3, 4, . . . , n,

αi,i−2 =
vi

vi−2
(v2

i+1 − v2
i−1 − vi−1vi + vivi+1 + vi+1vi+2), i = 3, 4, . . . , n,

αij =
vi

vj
(v2

i+1 − v2
i−1 − vi−2vi−1 − vi−1vi + vivi+1 + vi+1vi+2), i− j > 2,

αij = −2v̇i, j − i > 2.

(We assume vn+1 = vn+2 = vn+3 = · · · = 0.)
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We now prove that π1 and π3 are compatible. It is enough to show that π3 = LZ1π1

for some vector field Z1. We define

Z1 = R (Z0) =


 n∑

i,j

αijdvj ⊗ ∂

∂vi


 (Z0) =

n∑
i,j

αijdvj (Z0) ⊗ ∂

∂vi

=
n∑
i,j

αijvj
∂

∂vi
=

n∑
i=1


 n∑

j=1

vjaij


 ∂

∂vi
, (5.2)

where Z0 is the Euler vector field

Z0 =
n∑

i=1

vi
∂

∂vi
. (5.3)

Using the formula

{f, g}LXπ = X {f, g}π − {f,X(g)}π − {X(f), g}π (5.4)

it is easy to check that

LZ1 (π1) = −3π3, (5.5)

and therefore π3 is the Lie-derivative of π1 in the direction of the vector field Z1. This
makes π1 compatible with π3 and completes the proof of Theorem 2.

Using the recursion operator we generate the master symmetries

Zi = RiZ0. (5.6)

One calculates that

LZ0 (π1) = −π1, LZ0 (π3) = π3, LZ0 (H2) = 2H2. (5.7)

Therefore Z0 is a conformal symmetry for π1, π3, and H2. The constants appearing in
Oevel’s Theorem are

α = −1, β = 1, γ = 2. (5.8)

We use the notation h0 = H2, J0 = π1, X1 = J1dh0 = J0dh1 and in general hi = H2i+2,
Jj = π2j+1, Xi = Ri−1X1. It follows from Theorem 1 that the higher order Poisson tensors
satisfy the following deformation relations:

(i) [Zi, Xj ] = (1 + 2j)Xi+j ,

(ii) [Zi, Zj ] = 2 (j − i)Zi+j ,

(iii) LZiJj = (2j − 2i− 1)Ji+j ⇐⇒ LZi (π2j+1) = (2j − 2i− 1)π2(i+j)+1. (5.9)

We also have

Zi (H2j) = 2 (i+ j)H2(i+j). (5.10)

We will not present the results for the BV Cn+1 system. In fact the BV Cn+1 system
is equivalent to the BV Bn+1 system through the transformation

u1 �−→ un, u2 �−→ un−1, . . . , un−1 �−→ u2, un �−→ u1. (5.11)
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6 The Bogoyavlensky–Volterra Dn system
and its Poisson bracket

We recall the BV Dn+1 system (ui > 0)

u̇1 = u1 (u1 + 2u2) ,
u̇2 = u2 (2u3 − u1) ,
u̇i = 2ui(ui+1 − ui−1), i = 3, . . . , n− 3,
u̇n−2 = un−2(un + un−1 − 2un−3),
u̇n−1 = un−1(un − un−1 − 2un−2,

u̇n = −un(un − un−1 + 2un−2). (6.1)

We make a linear transformation

v1 = u1, vi = 2ui, i = 2, . . . n− 2, vn−1 = un−1, vn = un, (6.2)

to obtain the equivalent system

v̇1 = v1 (v1 + v2) ,
v̇i = vi(vi+1 − vi−1), i = 2, . . . n− 3,
v̇n−2 = vn−2(vn + vn−1 − vn−3),
v̇n−1 = vn−1(vn − vn−1 − vn−2),
v̇n = −vn(vn − vn−1 + vn−2). (6.3)

We consider again the 2 × 2 matrices which were defined in (4.4) and we also set

X =
( √

vn i
√
vn

−√
vn−1 i

√
vn−1

)
, Y =

1
2

( √
vn−2vn

√
vn−2vn

−√
vn−2vn−1

√
vn−2vn−1

)
,

W =
i

2

(
0 vn−1 − vn

vn − vn−1 0

)
. (6.4)

Equations (6.3) can be written in a Lax Pair form L̇ = [L,B], where

L =




0 0 · · · 0
√
v1 i

√
v1

0 O X O · · · O
... Xt O Xn−2

. . .
...

0 O Xn−2
. . . . . . O

√
v1

...
. . . . . . O X2

i
√
v1 O · · · O X2 O




,
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B =




0 · · · · · · 0 −1
2

√
v1v2 −1

2

√
v1v2 0 0

... O O Y O · · · · · · O

... O W O Yn−3
. . .

...

0 −Y t O O
. . . . . . O

...
1
2

√
v1v2 O −Yn−3

. . . . . . O Y3 O

1
2

√
v1v2

...
. . . . . . O O O Y2

0
... O −Y3 O O O

0 O · · · · · · O −Y2 O Y0




. (6.5)

The invariant polynomials of this system are given by the functions

H2, H4, . . . , Hn−1 when n is odd,
H2, H4, . . . , Hn−2, Hn−1 when n is even,

where Hk = 1
k Tr (L2k).

As in the case of the BV Bn+1 system we use the variables bj , 1 ≤ j ≤ n + 1 of the
equations (3.5) in order to find a cubic bracket π3 of the BV Dn+1 system. The dynamical
system (3.5) in the case of the Lie algebra of type Dn+1 can be written in Hamiltonian
form ḃj = {bj , H}, with Hamiltonian

H = log b1 + 2
n−1∑
j=2

log bj + log bn + log bn+1, (6.6)

and Poisson bracket

{bj , bj+1} = −{bj+1, bj} = 1 for j = 1, 2, . . . , n− 1,
{bn−1, bn+1} = −{bn+1, bn−1} = 1, (6.7)

all other brackets are zero. In the new variables vj (v1 = b−1
1 b−1

2 , vk = 2b−1
k b−1

k+1, k =
2, . . . , n − 2, vn−1 = b−1

n−1b
−1
n , vn = b−1

n−1b
−1
n+1) the above skew-symmetric bracket, which

we denote by π3, is given by

{v1, v2} = v1v2 (2v1 + v2) ,
{vi, vi+1} = vivi+1 (vi + vi+1) , i = 2, . . . , n− 3,
{vn−2, vn−1} = vn−2vn−1 (2vn−1 + vn−2) ,
{vn−1, vn} = 2vn−1vn (vn − vn−1) ,
{vi, vi+2} = vivi+1vi+2, i = 1, . . . , n− 3,
{vn−2, vn} = vn−2vn (vn−2 + 2vn) ,
{vn−3, vn} = vn−3vn−2vn. (6.8)

All other brackets are zero. As in the case of KM system we suppose that n is odd
(n = 2l + 1) and we look again for a bracket π1 which satisfies π3∇H2 = π1∇H4.
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We define

τij = −τji = v2i−1

j−1∏
k=i

v2k+1

v2k
for i < j, τii = v2i−1, (6.9)

and we let π1 be the bracket which is defined as follows:

{vi, vj} = (−1)i+j−1 τ[ i
2 ]+1,[ j+1

2 ] for 1 ≤ i < j ≤ n− 2,

{vi, vn−1} = {vi, vn} =
(−1)i+n

2
τ[ i

2 ]+1,[n
2 ] for i = 1, . . . , n− 2,

{vn−1, vn} = −{vn, vn−1} =
1
2

(vn − vn−1) . (6.10)

To illustrate, we give the Poisson matrix of the bracket π1 in the case n = 7

π1 =




0 τ11 −τ12 τ12 −τ13 1
2τ13

1
2τ13

−τ11 0 τ22 −τ22 τ23 −1
2τ23 −1

2τ23

τ12 −τ22 0 τ22 −τ23 1
2τ23

1
2τ23

−τ12 τ22 −τ22 0 τ33 −1
2τ33 −1

2τ33

τ13 −τ23 τ23 −τ33 0 1
2τ33

1
2τ33

−1
2τ13

1
2τ23 −1

2τ23
1
2τ33 −1

2τ33 0 1
2 (v7 − v6)

−1
2τ13

1
2τ23 −1

2τ23
1
2τ33 −1

2τ33 −1
2 (v7 − v6) 0




=




0 v1 −v1v3
v2

v1v3
v2

−v1v3v5
v2v4

v1v3v5
2v2v4

v1v3v5
2v2v4

−v1 0 v3 −v3
v3v5
v4

−v3v5
2v4

−v3v5
2v4

v1v3
v2

−v3 0 v3 −v3v5
v4

v3v5
2v4

v3v5
2v4

−v1v3
v2

v3 −v3 0 v5 −v5
2 −v5

2

v1v3v5
v2v4

−v3v5
v4

v3v5
v4

−v5 0 v5
2

v5
2

−v1v3v5
2v2v4

v3v5
2v4

−v3v5
2v4

v5
2 −v5

2 0 v7−v6
2

−v1v3v5
2v2v4

v3v5
2v4

−v3v5
2v4

v5
2 −v5

2 −v7−v6
2 0




.

We obtain the following Theorem:

Theorem 4. (i) π1, π3 are Poisson.
(ii) The function

1
4
H2 =

1
8

Tr
(
L4

)
= vn−2vn + 2vn−1vn +

n−2∑
i=1

vivi+1 +
1
2

n−2∑
i=2

v2
i ,
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is the Hamiltonian of the BV Dn+1 system with respect to the bracket π1.
(iii) The function

H = (vn − vn−1)
n−2∏
i=1

vi,

is the Casimir of the BV Dn+1 system in the bracket π1.
(iv) π1, π3 are compatible.

Proof. (i) We denote { }d the bracket π1 of Dn+1 and { }b the Poisson bracket π1 of Bn

(n = 2l + 1) . Then { }d can be defined as follows:

{vi, vj}d = {vi, vj}b, 1 ≤ i, j ≤ n− 2,

{vi, vn−1}d = {vi, vn}d =
1
2
{vi, vn−1}b , 1 ≤ i ≤ n− 2,

{vn−1, vn}d =
1
2

(vn − vn−1) .

We set

[vi, vj , vk] = {vi, {vj , vk}} + {vj , {vk, vi}} + {vk, {vi, vj}}.
For i, j, k = 1, 2, . . . , n− 2

[vi, vj , vk]d = [vi, vj , vk]b = 0.

For i, j = 1, 2, . . . , n− 2

[vi, vj , vn−1]d = [vi, vj , vn]d =
1
2
[vi, vj , vn−1]b = 0.

For i = 1, 2, . . . , n− 2

[vi, vn−1, vn]d = {vi, {vn−1, vn}d}d + {vn−1, {vn, vi}d}d + {vn, {vi, vn−1}d}d

=
1
2
{vi, vn − vn−1}d +

1
2
{vn−1, {vn−1, vi}b}d +

1
2
{vn, {vi, vn−1}b}d

=
1
2
{vi, vn−1 − vn−1}b − 1

4
{vn−1, {vi, vn−1}b}b +

1
4
{vn−1, {vi, vn−1}b}b

= 0.

Therefore, { }d is Poisson. Relation (6.7) implies that π3 is Poisson as well.
(ii), (iii) follow from simple calculations.
(iv) The proof that the bracket π1 + π3 is Poisson is similar to the above proof that

the { }d is Poisson. �

Remark. Since the functionsH2, H4, . . . , H2l, H are independent and in involution the BV
D2l+2 system is integrable.
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