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Navier–Stokes Equations

with Nonhomogeneous Dirichlet Data

Herbert AMANN

Institut für Mathematik, Universität Zürich, Winterthurerstr. 190,
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Abstract

We discuss the solvability of the time-dependent incompressible Navier–Stokes equa-
tions with nonhomogeneous Dirichlet data in spaces of low regularity.

1 Introduction

Throughout this paper Ω is a subdomain of R
3 having a nonempty compact smooth

boundary Γ. We consider the nonhomogeneous nonstationary incompressible Navier–
Stokes equations

∇ · v = 0
∂tv + (v · ∇)v −∆v = −∇π + f

in Ω× (0,∞),

v = g on Γ× (0,∞),
v(·, 0) = v0 on Ω.

(1.1)

The exterior force f , the boundary velocity g, and the initial velocity v0 are the given
data, and the velocity v and pressure π are the unknowns.
It is well-known that these equations are a mathematical model for the motion of

a viscous incompressible fluid, where we have normalized the (mathematically irrelevant)
constant viscosity and density to 1.
In this paper we are interested in the case where the boundary data g is different from

zero and v0, f , and g possess little regularity. In particular, we do not assume that g is
a tangential vector field.
Our results are expected to be useful in control problems since we can guarantee the

existence of a unique maximal solution (in a natural weak sense) depending continuously
on the data, measured in a rather weak topology. The fact that we do not have to
worry about compatibility conditions and can work in spaces of low regularity facilitates
topological considerations which are necessary in the minimization of cost functionals, for
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example. To give an idea, we can guarantee the existence of a unique maximal (very weak)
solution (v,∇π) of (1.1) such that v belongs to Lr

(
J+, Lq(Ω)

)
, where J+ is the maximal

interval of existence, provided

3 < q < r < ∞, 1/r + 3/q ≤ 1,

and (
v0, (f, g)

) ∈ Lq(Ω)× Lr,loc

(
R

+, Lq(Ω)× Lq(Γ)
)
.

Navier–Stokes equations with nonhomogeneous boundary data in spaces of low regular-
ity have been studied intensively by G Grubb and V A Solonnikov [10], and, in particular,
by G Grubb (see [6, 7, 8, 9]). These authors use pseudodifferential operator techniques
and study the equations in anisotropic Bessel potential and Besov spaces. Thus they ob-
tain fractional time derivatives only, in general. Moreover, they have to require that v0

and g belong to spaces of positive smoothness and that compatibility conditions have to
be satisfied.
Our approach is different, based on semigroup and interpolation-extrapolation methods,

developed by the author and already applied to the Navier–Stokes equations in [2, 3, 4].
Our solutions possess time derivatives with respect to some weak topology. Furthermore,
we can separate space and time regularity to get very precise results.
We recall the main results of [4], restricting ourselves to the situation where g = 0 is

not required, and draw some consequences. Then we deduce an improved version of the
main existence and uniqueness theorem of [3]. Finally, we give sufficient conditions —
a priori estimates in very weak topologies — for the solutions to exist globally. We also
show that our results are optimal in the sense that our spaces of initial values cannot be
enlarged within their classes.

2 Function spaces

We use standard notation and employ the following convention: If F(Ω, R3) is a vector
space of R

3-valued distributions on Ω then we simply denote it by F. If X is a subset
of R

3 different from Ω then we put F(X) := F(X, R3). For example, D, resp. D(Ω), is the
space of smooth R

3-valued functions having compact support in Ω, resp. Ω, and W s
q (Γ) is

the Sobolev–Slobodeckii space of R
3-valued distributions on Γ.

We always assume that q, r ∈ (1,∞). Then Hs
q and Bs

q,ρ, 1 ≤ ρ ≤ ∞, are the usual
Bessel potential and Besov spaces, respectively, (of R3-valued distributions on Ω) for s ∈ R.
(See [2] for more detailed explanations.) We set

〈v, w〉 :=
∫

Ω
v · w dx, v, w ∈ D(Ω),

and, denoting by dσ the volume measure of Γ,

〈v, w〉Γ :=
∫

Γ
v · w dσ, v, w ∈ C(Γ).

We also use 〈·, ·〉 to denote the standard duality pairings between various spaces of
(scalar- and vector-valued) distributions without fearing confusion. Similar conventions
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hold for 〈·, ·〉Γ. We write ∂ν for the derivative on Γ with respect to the outer unit normal ν,
denote by γ the trace, and by γν the normal trace operator, that is, γνu = ν · γu.
We set

Hs
q :=




{u ∈ Hs
q ; γu = 0 }, 1/q < s ≤ 2,

{u ∈ H1/q
q (R3); supp(u) ⊂ Ω }, s = 1/q,

Hs
q , 0 ≤ s < 1/q,

(H−s
q′ )

′, −2 ≤ s < 0,

(2.1)

where the dual space is determined by means of the duality pairing 〈·, ·〉. It follows (cf.
[14, Theorems 4.7.1(a) and 4.8.1]) that

Hs
q = Hs

q , −2 + 1/q < s < 1/q. (2.2)

(In [14] the case of a bounded Ω is considered only. However, it is easy to verify that all
results in that book cited here and below continue to hold if it is only assumed that Γ is
compact.) In [3, Remark 1.5] it is shown that

D0(Ω) :=
{

ϕ ∈ D(Ω, R); γϕ = 0
}

is dense in Hs
q for |s| ≤ 2.

We denote by Hq the closure of Dσ := {u ∈ D; ∇ · u = 0 } in Lq. Recall (e.g., [5, 11,
12, 13]) that

Hq = {u ∈ Lq; ∇ · u = 0, γνu = 0 }.

We put

H
s
q :=

{
Hs

q ∩ Hq, 0 ≤ s ≤ 2,

(H−s
q′ )

′, −2 ≤ s < 0,
(2.3)

the dual spaces being determined by means of the duality pairing 〈·, ·〉σ, obtained by
restricting 〈·, ·〉 to Hq′ × Hq.
Similarly,

Bs
q,r :=




{u ∈ Bs
q,r; γu = 0 }, 1/q < s ≤ 2,{

u ∈ B1/q
q,r (R

3); supp(u) ⊂ Ω
}
, s = 1/q,

Bs
q,r, 0 ≤ s < 1/q,

(B−s
q′,r′)

′, −2 ≤ s < 0,

(2.4)

the dual space being determined by means of 〈·, ·〉, and

B
s
q,r :=




Bs
q,r ∩ Hq, 0 < s ≤ 2,

the closure of Dσ in B0
q,r, s = 0,

(B−s
q′,r′)

′, −2 ≤ s < 0,

(2.5)
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where now the dual spaces are determined by the pairing 〈·, ·〉σ. Similarly as for the Bessel
potential spaces,

Bs
q,r = Bs

q,r, −2 + 1/q < s < 1/q. (2.6)

In general,

Es
q

d
↪→ Et

q, Eq ∈ {Hq, Hq,Bq,r, Bq,r; 1 < r < ∞}, s > t, (2.7)

where the superscript d means ‘dense embedding’. Thus it follows from (2.2)–(2.4) and
(2.6) that H

s
q, resp. B

s
q,r, is the closure of Hq in Hs

q , resp. B
s
q,r, for −2 + 1/q < s ≤ 0.

Lastly,

Gq :=
{

v ∈ Lq; v = ∇π, π ∈ Lq,loc(Ω, R)
}

and

G
s
q := Hs

q ∩ Gq, 0 ≤ s ≤ 2,

whereas

G
s
q is the closure of Gq in Hs

q for − 2 ≤ s < 0.

Observe that we can also define spaces Bs
q,ρ and B

s
q,ρ for ρ ∈ {1,∞} and 0 ≤ s ≤ 2 by

replacing r in (2.4) and (2.5), respectively, by ρ. Thus we obtain well-defined scales Bs
q,∞

and B
s
q,∞ for |s| ≤ 2 by setting

Bs
q,∞ := (B−s

q′,1)
′, B

s
q,∞ := (B−s

q′,1)
′, −2 ≤ s < 0,

with respect to the duality pairings 〈·, ·〉 and 〈·, ·〉σ, respectively. Finally, we put
B̊s

q,∞ = closure of Hs
q in Bs

q,∞, B̊
s
q,∞ := closure of H

s
q in B

s
q,∞

for |s| ≤ 2. For |s| < 2 with s �= 0 the spaces B̊s
q,∞ and B̊

s
q,∞ are denoted in [2] by ns

q,0

and ns
q,0,σ, respectively, and called little Nikol’skii spaces.

3 Integrable data

Throughout this section we suppose that

• 3 < q < r < ∞, 1/r + 3/q ≤ 1; (3.1a)

• (f, g) ∈ Lr,loc

(
R

+,H−2+1/r
q × W−1/q+1/r

q (Γ)
)
; (3.1b)

• v0 ∈ B
−1/r
q,r . (3.1c)

Let J be a subinterval of R
+ containing 0 such that J̇ := J \{0} �= ∅. Set J∗ := J \{sup J}.

The pair (v, w) is said to be a (very weak) Lr(H
1/r
q )-solution of the Navier–Stokes equa-

tions (1.1) on J if

(v, w) ∈ Lr,loc(J∗, H1/r
q × G

−2+1/r
q ) (3.2)
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and ∫
J

{〈∂tϕ+∆ϕ, v〉+ 〈∇ϕ, v ⊗ v〉} dt

=
∫

J

{〈w,ϕ〉 − 〈f, ϕ〉+ 〈g, ∂νϕ〉Γ
}

dt − 〈
v0, ϕ(0)

〉
(3.3)

for all ϕ ∈ D(
J∗,D0(Ω)

)
.

A solution is maximal if there does not exist another solution (of the same type) being
a proper extension of it.
Clearly, (3.3) is formally obtained from the second differential equation in (1.1), the

momentum equation, by multiplying it by ϕ, integrating by parts, using Green’s formula,
the boundary and initial data, and setting w := ∇π.
By admitting in (3.3) standard test functions ϕ ∈ D(J∗,D) = D(Ω× J∗) only, it follows

that a very weak solution is a distributional solution of the momentum equation.
In the remainder of this paper we write ∇π for w without fearing confusion.
The following theorem guarantees the existence of a unique maximal Lr(H

1/r
q )-solution

of (1.1) and gives further regularity properties.

Theorem 1. Let assumptions (3.1) be satisfied. Then the Navier–Stokes equations (1.1)
possess a unique maximal Lr(H

1/r
q )-solution, (v,∇π). The maximal interval of existence,

J+, that is, dom(v,∇π), is open in R
+. Moreover,

v ∈ C(J+, B−1/r
q,r ), (v̇,∇π) ∈ Lr,loc(J+, H−2+1/r

q × G
−2+1/r
q ). (3.4)

If J+ �= R
+ then v is not uniformly continuous on J+.

Proof. This is a particular case of [4, Theorem]. �

Remarks 1. (a) In [3] it is shown that

H−2+1/r
q

∼= H−2+1/r
q × W−1/q+1/r

q (Γ). (3.5)

Thus H
−2+1/r
q is not a space of distributions on Ω but contains also distributions being

supported on Γ. This explains why there is no compatibility condition for g guaranteeing
that g is a tangential vector field. Indeed, a possible nontrivial normal component of g is
compensated by the ‘boundary part’ of the (generalized) pressure gradient w.

(b) Due to (3.5) our hypotheses on (f, g) are ambiguous in the sense that f may ‘contain
a part on Γ’ which should be covered by g. It is tempting to assume that

f ∈ Lr,loc(R+, H−2+1/r
q ). (3.6)

However, then∫
J
〈f, ϕ〉 dt (3.7)

is not necessarily well-defined for all test functions ϕ ∈ D(
J∗,D0(Ω)

)
. To guarantee

that (3.7) is meaningful for a given f with (3.6), it suffices, for example, to assume that
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f = f0 + f1 with dist
(
supp(f0),Γ× R

+
)

> 0 and f1 ∈ Lr,loc(R+, Hσ
q ) with σ > −2 + 1/q

(see [4]).

(c) Given T > 0, the velocity part of the maximal solution satisfies

v ∈ BUC
(
J+ ∩ [0, T ], B−1/r

q,r

)
,

where BUC is the space of bounded and uniformly continuous functions, iff

v ∈ Lr

(
J+ ∩ [0, T ], H1/r

q

)
. (3.8)

Thus, if it can be shown that

• either v ∈ BUC
(
J+ ∩ [0, T ], B−1/r

q,r

)
,

• or v ∈ Lr

(
J+ ∩ [0, T ], H1/r

q

)
for every T > 0, then (v,∇π) is a global solution.

Proof. Since v satisfies the differential equation in [4, (5.8)], it is easily verified that (3.8)
implies that

v̇ ∈ Lr

(
J+ ∩ [0, T ], H−2+1/r

q

)
.

Now the assertion is a consequence of [4, Theorem 2.2(i)], Theorem 1, and of (2.2)
and (2.6). �

(d) The maximal solution (v,∇π) depends in the topologies described by (3.2) and (3.4)
continuously on

(
v0, (f, g)

)
, with respect to the topologies specified in (3.1).

Proof. See [4, Remark 2.3(c)]. �

(e) In [4, Proposition 3.4] it is shown that

B
s1
q1,r1

d
↪→ B

s0
q0,r0

, (3.9)

provided

s1 − 3/q1 ≥ s0 − 3/q0, 1 > 1/q1 ≥ 1/q0 > 0, 1 > 1/r1 ≥ 1/r0 > 0. (3.10)

It is known that the corresponding embeddings for the standard Besov spaces are optimal.
This implies that conditions (3.9), (3.10) are sharp as well. From this we deduce that the
two spaces B

−1/r1
q1,r1 and B

−1/r0
q0,r0 are incomparable if (q1, r1) �= (q0, r0). In this sense each one

of the spaces B
−1/r
q,r , where (q, r) satisfies (3.1a), is an optimal space of initial values. �
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4 Time-continuous data

In this section we suppose that

• 3 < q < τ < r < ∞, −1 + 3/q ≤ s < 1/r; (4.1a)

• (f, g) ∈ C
(
R

+,H−2+1/τ
q × W−1/q+1/τ

q (Γ)
)
; (4.1b)

• v0 ∈ B̊
s
q,∞. (4.1c)

Thus, in comparison with (3.1b), we now require slightly more smoothness for f and g.
The pair (v,∇π) is said to be a (very weak) C(H1/r

q )-solution of the Navier–Stokes
equations (1.1) on J if (3.3) holds (with w = ∇π and) with (3.2) being replaced by

(v,∇π) ∈ C(J̇ , H1/r
q × G

−2+1/r
q ). (4.2)

Theorem 2. Let (4.1) be satisfied. Then the Navier–Stokes equations (1.1) possess a
unique maximal C(H1/r

q )-solution, (v,∇π), satisfying

lim
t→0

t(1/r−s)/2 ‖v(t)‖
H

1/r
q

= 0. (4.3)

The maximal interval of existence, J+, is open in R
+,

v ∈ C1(J̇ , H−2+1/r
q ) ∩ C(J, B̊s

q,∞),

and

lim
t→0

t1/r−s ‖∇π(t)‖
H

−2+1/r
q

= 0. (4.4)

Proof. Given Banach spaces E and F , we write L(E,F ) for the Banach space of all
bounded linear operators from E into F , and L2(E,F ) is the Banach space of all continuous
bilinear maps from E into F .
We denote byR∈ L(

W
−1/q+1/τ
q (Γ),H−2+1/τ

q

)
the dual of the interior normal derivative

operator

−∂ν ∈ L(
H

2−1/τ
q′ ,W

1/q−1/τ
q′ (Γ)

)
. (4.5)

The validity of (4.5) is a consequence of the trace theorem. Then

f +Rg ∈ C(R+,H−2+1/τ
q ). (4.6)

We also set B(v, w) := ∇ · (v ⊗ w) and recall from [4, Lemma 4.1] that

B ∈ L2(H1/r
q ,H2/r−1−3/q

q ), (4.7)

By A we mean the unique extension in L(H1/r
q ,H

−2+1/r
q ) of −∆ |H2

q ∈ L(H2
q , Lq),

the negative Laplace operator in Lq with Dirichlet boundary conditions. Then A is
well-defined and, considered as an unbounded linear operator in H

−2+1/r
q , it generates

a strongly continuous analytic semigroup on H
−2+1/r
q (see [2, Section 2]).
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Now we consider the differential equation

v̇ +Av = −∇π +B(v, v) + f +Rg in J̇ , v(0) = v0 (4.8)

in H
−2+1/r
q . From [3, Theorem 2.2] we know that

H−2+1/r
q = H

−2+1/r
q ⊕ G

−2+1/r
q

and that the corresponding projection P from H
−2+1/r
q onto H

−2+1/r
q is the unique con-

tinuous extension of the Helmholtz projector P : Lq → Hq. Moreover, A := PA |H1/r
q is

the unique extension in L(H1/r
q , H

−2+1/r
q ) of the Stokes operator −P∆ |H2

q ∈ L(H2
q , Hq),

and −A is the infinitesimal generator of an analytic semigroup
{

U(t); t ≥ 0
}
on H

−2+1/r
q ,

the unique continuous extension over H
−2+1/r
q of the Stokes semigroup on Hq.

Now we set b := PB and h := P (g +Rg) and consider the evolution equation

v̇ + Av = b(v, v) + h in J̇ , v(0) = v0 (4.9)

in H
−2+1/r
q , which is obtained by projecting (4.8) into H

−2+1/r
q . From (4.7) we deduce that

b ∈ L2(H1/r
q , H2/r−1−3/q

q ), (4.10)

and (4.6) implies

h ∈ C(R+, H−2+1/τ
q ). (4.11)

Put 2γ := (1/r + 1− 3/q) ∧ (1/τ − 1/r). Then (2.7), (4.10), and (4.11) imply
b ∈ L2(H1/r

q , H−2+1/r+2γ
q ), h ∈ C(R+, H−2+1/r+2γ

q ). (4.12)

Note that 0 < 2γ < 1.
From [2, Theorem 3.4] we infer that Status: O

H
−2+1/r+2γ
q

.= [H−2+1/r
q , H1/r

q ]γ , (4.13)

where [·, ·]γ denotes the complex interpolation functor of exponent γ. Furthermore, setting
2α := 1/r − s, we also infer from [2, Theorem 3.4] that

B̊
s
q,∞

.= (H−2+1/r
q , H1/r

q )01−α,∞ (4.14)

with (·, ·)01−α,∞ being the continuous interpolation functor of exponent 1− α, and that
U |H̊s

q is strongly continuous. Hence, setting

E0 := H
−2+1/r
q , E1 := H

1/r
q , F1−α := B̊

s
q,∞,

it follows from (4.12)–(4.14) and [2, Theorem 5.6] that (4.9) possesses a unique maximal
solution

v ∈ C(J+, B̊s
q,∞) ∩ C(J̇+, H1/r

q ) ∩ C1(J̇+, H−2+1/r
q ) (4.15)

satisfying (4.3), and that J+ is open in R
+.
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Now we put

∇π := (1− P )
(−Av +B(v, v) + f +Rg

)
.

Then it follows from (4.6), (4.7), the continuity of A as a map from H
1/r
q into H

−2+1/r
q ,

the definition of P , and (4.15) that

∇π ∈ C(J̇+, G−2+1/r
q )

and that (4.4) is true. It is obvious that (v,∇π) satisfies (4.8) with J = J+.
Set F := −∇π +B(v, v) + f +Rg . Then (4.2)–(4.7) imply

F ∈ C(J̇+,H−2+1/r
q ), lim

t→0
t2α ‖F (t)‖

H
−2+1/r
q

= 0. (4.16)

Fix p ∈ (1, 1/2α). We deduce from (2.2), (4.3), and (4.16) that

v ∈ Lp,loc(J+, H1/r
q ), Av, F ∈ Lp,loc(J+,H−2+1/r

q ).

Hence v̇ = −Av + F ∈ Lp,loc(J+,H
−2+1/r
q ), so that v is a W 1

p,loc-solution of

v̇ +Av = F in J̇+, v(0) = v0 (4.17)

in H
−2+1/r
q in the sense of [1, Section III.1.3]. Thus Theorem V.2.8.3 of that book (with

α := 0 and E0 := H
−2+1/r
q ) guarantees that v is the unique maximal Lp(H

1/r
q )-solution

of (1.1). This implies that (v,∇π) is the unique maximal C(H1/r
q )-solution of (1.1) satis-

fying (4.3). �

Remarks 2. (a) Suppose that for each T > 0 one of the following conditions is satisfied:

• v ∈ BUC
(
J+ ∩ [0, T ], B−1+3/q

q,∞
)
;

• v
(
J+ ∩ [0, T ]) is relatively compact in B−1+3/q

q,∞ ;

• there exist t0 ∈ J+ and σ > −1 + 3/q such that
sup

t∈J+∩[t0,T ]

‖v(t)‖W σ
q

< ∞.

Then J+ = R
+.

Proof. For −2 + 1/q < t < 1/q one finds, similarly as (2.6), that Bt
q,∞ = Bt

q,∞. By in-
terpolating (with (·, ·)q,∞) one deduces from [3, Theorem 2.2] that B

t
q,∞ is a closed linear

subspace of Bt
q,∞ = Bt

q,∞. From this and v ∈ C(J+, B̊
−1+3/q
q,∞ ) it follows that B can be

replaced by B̊ in the first two conditions above. Similarly, one can replace W σ
q = Bσ

q,q

by B
σ
q,q in the third hypothesis. Now the assertion follows from the proof of Theorem 2

and [2, Remarks 5.9(b) and (d)], thanks to B
σ
q,q ↪→ B

σ
q,∞. �

(b) Everything said above remains valid if we replace the continuity hypothesis for (f, g) by

(f, g) ∈ C
(
(0,∞),H−2+1/τ

q × W−1/q+1/τ
q (Γ)

)
and limt→0 tα+γ

(
f(t), g(t)

)
= 0 in H

−2+1/τ
q × W

−1/q+1/τ
q (Γ).
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Proof. This is a consequence of [2, Theorem 5.6] and the proof of Theorem 2. �

(c) It can be shown that B
s
q,r

d
↪→ B̊

s
q,∞. Suppose that 3 < q < r < ∞ and 1/r + 3/q < 1,

and that (f, g) satisfies (4.1b). Then (f, g) satisfies (3.1b) as well. Hence, given v0 ∈ B
−1/r
q,r ,

Theorem 1 guarantees the existence of a unique maximal Lr(H
1/r
q )-solution (vr,∇πr)

on J+
r . Since s := −1/r > −1 + 3/q, assumptions (4.1) are satisfied as well. Hence Theo-

rem 2 implies that there exists a unique maximal C(H1/r
q )-solution (v∞,∇π∞) on J+∞

satisfying

lim
t→0

t1/r ‖v∞(t)‖H
1/r
q

= 0.

Note that this does not imply that v∞ ∈ Lr,loc(J+∞, H
1/r
q ) and, conversely, we cannot gua-

rantee that (vr,∇πr) is a C(H1/r
q )-solution on J+

r . This shows that Theorems 1 and 2 are
independent of each other.

(d) If (3.1) is satisfied and v is the unique maximal Lr(H
1/r
q )-solution of (1.1) then it

follows that there are q0 ≥ q and r0 ≥ r satisfying 2/r0 + 3/q0 ≤ 1 such that

v ∈ Lr0,loc(J+, Lq0). (4.18)

Such a ‘Serrin’ condition is also valid if v is a C(H1/r
q )-solution, provided (f, g) is appro-

priately smooth (cf. [2, Remark 9.5(b)]). This fact can be employed to obtain regularity
results for these solutions.

Proof. Condition (4.18) is a consequence of [4, Theorm 3.3]. �

Corollary 1. Suppose that v0 and f are smooth and g = 0. If the hypothesis of Re-
mark 2(a) is satisfied then the Navier–Stokes equations possess a unique global smooth
solution.

Proof. This is an immediate consequence of Remarks 2(a) and (d). �

Of course, the assumption that g = 0 can be replaced by assuming that g is a smooth
tangential vector field. Furthermore,

B−1+3/q0
q0,∞ ↪→ B−1+3/q1

q1,∞ , 3 < q0 < q1 < ∞,

where these embeddings are proper. Increasing g should thus make the task of verifying
one of the conditions in Remark 2(a) easier.
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