
Mobile Applications -Vulnerability Assessment

Through the Static and Dynamic Analysis

Sreenivasa Rao Basavala 1

Dept. of Computer Science & Engineering, CMJ University, Shillong, India

basavala@gmail.com

 Narendra Kumar 2

Dept. of Computer Science & Engineering, Ace college of Technology and Management,

Agra, India

narendra.ibs@gmail.com

Alok Agarrwal3

Dept. of Computer Science & Engineering, JPIET, Meerut, India

 alok289@yahoo.com

1. Introduction

In this paper, we discuss the importance of mobile

applicationsvulnerability assessment and penetration

testing techniques to identify different mobile application

threats and evaluate our contribution on the different

flavors of mobile development platforms such as iOS for

iPAD and iPhone apps, Android apps, Windows apps and

BlackBerry applications.Currently most of the banking,

financial, insurance,health systems and games for their

mobile applications rely on underlying device operating

system for their security.

The mobile platform has become everywhere for

conducting business and engaging with their consumers.

The always-connected, portable devices give direct

access to systems and data, anywhere a cellular or

wireless connection can be established.

But, with mobile application flexibility comes with

complexity and insecurity. While the mobile OS vendors

or providers have attempted to build a more secure

mobile operating systems compared to their desktop

families, mobile applications can still be built using

insecure coding practices, on top of insecure

developmentplatforms, and with insecure features and

functions. As security is often an afterthought in

application development, the tradeoff between delivering

a secure application late and delivering a functional

application on time often gets made at the expense of

security. However, this doesn’t have to be the case;

selecting the right platform can enable secure applications

to be built across multiple platforms, delivering them

with full functionality, on time. Also we will discuss

mobile Top-10 vulnerabilities in the next sections.

Figure 1: Smart phones sales and their usages

Abstract

In the recent day’s mobile applications usage is increasing by banking and financial institutes, health and hospital management

systems such as mobile banking apps, e-commerce apps, news feeds, inpatient and outpatient information, social networking

apps and game apps etc. All these mobile applications require support for security properties like authentication, authorization,

data confidentiality, and sensitive information leakage etc. The mobile applications have seen rapidly growth in the last couple of

years. These applications has provided suitable to banks, credit card data, personally identified information, travel applications

etc., the enterprise mobile applications extend corporate networks beyond the perimeter devices and thus potentially expose these

organizations to the new types of security threats. Security risks associated with these applications can often be identified and

mitigated by subjecting them to security testing. Compared to desktop or web applications, mobile applications are hard to test

for security. At the same time, these applications are not necessarily more secure then desktop or web applications.

Keywords:Application Security, Mobile Security, Penetration testing, Information Security, Security Testing, VAPT.

Conference on Advances in Communication and Control Systems 2013 (CAC2S 2013)

© 2013. The authors - Published by Atlantis Press 574

2. Mobile Application

A mobile application also called as mobile app or smart

phone app is a software application designed to run on

smartphones, tablet computers and other mobile devices.

They are usually available through application

distribution platforms, which are typically operated by

the owner of the mobile operating system, such as the

Apple App Store, Google Play (Android platform),

Windows Phone Store and BlackBerry App World. Some

apps are free, while others must be bought. Usually, they

are downloaded from the platform to a target device, such

as an iPhone, BlackBerry, Android phone or Windows

Phone.

Figure 2: Popular mobile platforms in the recent market

The term app called as application has become very

popular. Mobile apps were originally offered for general

productivity and information retrieval, including email,

calendar, contacts, and stock market watch and weather

forecast information. However, public demand and the

availability of developer tools drove rapid expansion into

other categories, such as mobile games, automation, GPS

and location-based services, mobile banking, order-

tracking, and ticket purchases. The eruption in number

and variety of applications made discovery a challenge,

which in turn led to the creation of a wide range of

review, recommendation, and curation sources, including

blogs, magazines, and dedicated online application

discovery services.

Figure 3: An iOS Architecture

3. Mobile Application Vulnerabilities

The popularity of mobile applications (for smart phones)

has continued to rise, as their usage has become

increasingly prevalent across mobile phone users [1]. We

can see the risks at every layer as follows:

• Mobile Network Level: interception of data over the

air.

− Mobile Wi-Fi has problems same as problems as

laptops.

− GSM has shown some cracks.

• Device Hardware Level: called baseband layer

attacks

− Memory corruption defects (buffer overflow) in

firmware used to root device.

• Operating System Level: defects in OS kernel code

or vendor supplied system code.

− IPhone or android jailbroken devices are usually

exploitingthese defects.

• Application Level: Mobile apps with vulnerabilities

and malicious code have access to user’s sensitive

data and device sensors.

− Device isn’t rooted but all your email and

pictures are stolen, your location (geo tagging

attack) is tracked, and phone bill is much higher

than usual.

In this paper we will discuss only the common

application security risks (Top-10) found in different

mobile applications irrespective of mobile platform

providers. We see these security risks in mobile

applications every day. When we see them they often

show up as vulnerabilities in the applications we are

assessing. However, this is a good starting point for a

security or development teams looking to understand the

most common mobile application security issues[1] [2]

and fix them appropriately. This paper focuses on these

risks and also will discuss mobile threat model.

1. Insecure or unnecessary client-side data storage

2. Lack of data protection in transit

3. Personal Data Leakage

4. Failure to protect resources with strong

authentication

5. Failure to implement least privilege

authorization policy

6. Client-side injection

7. Client-side DOS

8. Malicious third-party code

9. Client-side buffer overflow

10. Failure to apply server-side controls

575

Figure 4: Vulnerability count by platform

3.1. Insecure or unnecessary client-side data storage

This is security risk addresses the understandable concern

of sensitive or PII(personally identifiable information)

data being stored on physical mobile devices such as

iPhone, android, windows or black berry. All application

developers must prudently consider storing a piece of

data on a mobile device’s storage area is entirely critical

to the application’s functionality. If the data is required to

an application, and it is sensitive, it must be protected in

such a manner. Data protection means encryption. For

iOS or android developers, this is not adifficult problem.

Mobile OS provides a very easy to use and secure data

protection mechanism. The mechanism is suitably

referenced as data protection. Apple iOS provides two

different methods to achieve this and it is very straight

forward to use.

a. NSDataWritingFileProtectionComplete:This is sub-

class of NSData and it is used to set the content

protection attribute of the file when writing it out. In this

case, the file is stored in an encrypted layout and may be

read from or written to only while the physical device is

unlocked and at all other times, attempts to read and write

the file result in failure.

b. NSFileManager: The NSFileManager class enables to

perform generic file system operations and protects an

app from the underlying file system. To protect the file at

rest you should not access the device.To get the best

results when the user has a locked their device and app

can only be ready for the user to protect them.

3.2. Lack of data protection in transit

This risk belongs to the data while transmitting. After the

data has been secured on the physical device the next

major concern is protecting the communications between

the mobile application and the application server. The

most common protocol is HTTP (S). This can achieve

application developers by using the NSURL or

NSURLConnection in iOS. By default,NSURL or

NSURLConnection will fail with an error in the event of

an SSL issue. Integrated development environments do

not have a valid SSL certificate and which creates a

problem. NSURL and NSURLConnection behavior is

changed to accept invalid certificates to continue

development without hassle.Implementing these methods

also gives us the opportunity to warn the user in the event

of an invalid SSL certificate.

Figure 5: SSL certificate security issue

3.3. Personal Data Leakage

This is another common threat in the mobile applications.

From risk perspective the priority of the issue is

less.Application developers must take care to secure their

user’s private information such as usernames, passwords,

credit card numbers, emails id’s, DOB and

address,.Applications providers must protect their user’s

personal data. We can use the similar data protection

mechanism [3] described in the previously discussed

section in insecure or unnecessary client-side data storage

to protect personal user data. Beyond that this it is an

application design decision about how the application

will handle the app user’s personal data. Personal data

privacy policy has become a hot topic and users are

becoming much more aware that their private data may

be at risk in mobile applications. The following figure [6]

shows, personal data leakage on an average.

Figure 6: Personal data leakage

576

3.4. Failure to protect resources with strong

authentication

This issue is belongs to a client and server issue. Very

little authentication is typically performed on a mobile

device in the figure [7].

The majority of the authentication mechanisms that uses

mobile devices are server authenticating. Applications on

mobile devices hardly authenticate other services directly

on internet. If this does occur an application is usually

being asked to share a resource, such as a photograph or

some other piece of data managed by the application,

with a server.

The main concern is that mobile applications properly

authenticate [4] to servers and that they implement strong

authentication that uniquely identifies each mobile

application user to the server. One of the main concerns

for application developers is to never embed client side

secrets such as tokens (Oauth tokens like consumer token

or access token) in their application and then use those as

an integral part of an authentication method.

3.5. Failure to implement least privilege authorization

policy

Applications should request permissions whenever they

requiredthe permissions absolutely they need. Does your

mobile application really need access to the user’s GPS

(global positioning system) or geo tagging location? Is

this is protecting user’s privacy data. Be practical with

what resources user attempt to access.The other part of

this issue is application server issue.

The key issue is how to handle that applications,

particularly thick client based applications, may contain a

great application functionality that may not available to

lower privilege users. The application server is

responsible for checking and validating that a user can

perform a requested action. Even if the functionality is

accessed via the application, the app server must not

allow lower privileged users to access and execute higher

privileged server side business functionality. This is

called vertical privilege escalation and it is a constant risk

to server side applications.

Horizontal privilege escalation [8] flaw allows users of

mobile applications to easily bypass authorization

controls and can access the data of other registered

usersat the same privilege level. In, this situation, proper

care must be taken and allow only a mobile application to

access server side data that belongs to the currently

authenticated and authorized user.

Figure 7: Multifactor authentication processof applications

577

Figure 8: Privilege escalation from least to most

3.6. Client-side attack

Client side injection attack is serious security issue and it

is an interesting problem that can lead to a variety of

security issues depending on the application and how it

operates. Many mobile applications utilize SQLite

database to store data at the device memory, which means

that some of the applications may be vulnerable to SQL

injection. Frequently the significances of SQL injection

against a client side application are minimal impact. Also

there are another kind of attack called cross site scripting

(XSS) attack.

Figure 9: XSS attack on mobile application.

This attack illustrates the possibilities of rich user

environments and the concerns they can have when an

application implicitly trusts users input. The vulnerability

was a simple cross site scripting attack that allowed

remote code execution. Similar issues can surface in it

and applicable to all mobile applications if the application

uses UIWebView or web view kit or other rich

environments and it does not carefully check users input.

Any specific advice given here would be specific to be

useful in a general way to application developers. Make

sure application data confirms to the expected length,

range, data type and format. Data length is obvious, range

is for data that has expected numerical ranges (it might

positive integers only), data type is for any sort of integer

or other data structure being read and format is for the

actual data formatting.

Data type is an interesting part of the application input.

Any kind of objects are inherently insecure and should

never be trusted from a remote source. If a user can

directly input objects into the application system and

manipulate them a variety of difficult to catch security

issue can result.

Another interesting issue is with string format in the iOS

based applications. Objective-C development

environment it hardly feels like you are writing

application code that gets compiled to the native

programming instructions. Drop down to a library, like

SQLite and that illusion is quickly shattered. Format

strings using the%@ formatter are vulnerable to a variety

of interesting attacks: () such as buffer overflow attacks.

3.7. Client-side DOS

This security issue is honestlyunderstandable. Make sure

you are being a defensive application programmer. This

can result from development errors and bad application

programming logic. New and modern mobile applications

do a lot of data parsing of formats such as XML and

JSON objects. Defects in these parsers or in the way they

are used can result in unexpected DoS (denial of service)

attack.

3.8.Malicious third-party code

This security issue applies only iOS based applications.

Assume that the device is jailbroken (unlocked). A

malicious user can do anything on jailbroken devices.

Also, even on appropriate, non jailbroken devices there

are remarkable problems that can arise related to the

URL/Protocol handling mechanism. iOSapps is not very

great on inter process communication. One of the few

mechanisms available to iOS application developers to

achieve this is the custom URL implementation scheme.

Use these with extreme caution.

The 3rd party of the code might leads to the application

dead state or reads data or sensitive information and send

it malicious user. In the mobile application world

especially Android platform [5], there are huge number

fraud applications because of its open source mobile

platform and there is no control to the 3rd code as well as

developers compare to the iOS application developers.

578

Figure 10: Third party application with malicious code

installation

3.9. Client-side buffer overflow

This is common application vulnerable and it’sstill quite

possible in the native languages such as C, C++. Since

Objective-C is a strict superset of C programming and

there is no limit to the depth in which an iOS can get

itself in trouble with old C programming issues. This

attack can easily exploitable.Mobile application

developers should take care most careful and attention to

string formatting such as NSLog, etc. It is necessary to

stick to the NS* class hierarchy when at all possible.

Abstract away your C code to the smallest amount

possible and be extremely cautious with any C string and

memory operations especially iOS

applicationsdevelopment.

3.10. Failure to apply server-side controls

This is one the most of the common and serious security

issue in both web and mobile applications. For example,

whenever accessing the application, the proper controls

should be taken care as we discussed in the earlier

sections. It includes, authorization and authentication

check, read or write permissions, also should check cross

talk security issues and also consider the above security

issues.

4. Mobile Threat Model

Threat modeling [9] is a systematic process developed by

Microsoft Corporationthat begins with a clear

understanding of the system or an application. It is

necessary to define the following areas to understand

possible threats to the application as shown in the figure

11.

a) Mobile Application Architecture: This area describes

how the application architecture is designed from device

specific features and functionalities used by the

application, wireless and data transmission protocols,

data transmission mediums, interaction with hardware

components and other applications of the organization.

b) Mobile Data: What kind of data does the mobile

application store and process? What is the business

purpose of this data and what are the data workflows etc.

c) Threat Agent Identification: What are the threats (or

evens) to the mobile application and who are the threat

agents. This area also outlines the process for defining

what threats apply to the mobile application such as entry

and exit points of the application.

d) Methods of Attack: What are the most common attacks

utilized by different threat agents. This area defines these

attacks, so that application or server controls can be

developed to mitigate attacks.

e) Controls: What are the different application and server

controls to prevent attacks? This is the last area to be

defined only after previous areas have been completed by

the application development team.

Figure 11: Mobile threat agent identifier and its types

5. Conclusion

Mobile application developers and the organizations

intending developing and deploy mobile applications in

secure manner and must plan their security testing called

579

penetration testing and they follow strategy across

manual and automation tests approaches for efficient and

error-free application delivery. In addition to actual

devicebased testing, emulators should be included as an

integral part of the security testing program. Enterprise

applications require special pen testing techniques

because they deal with lot users sensitive data.

Outsourcing to vendors who are operating an independent

testing practice may be a viable option to manage the

expertise, scalability, and quality assurance requirements

for mobile application delivery in secure manner.

6. References

1. gHackers break into Android phone at Black Hat�h

http://news.techworld.com/

2. Forrester Mobile Security Report:

http://www.forrester.com/rb/Research/apples_iphone_
and_ipad_secure_enough_for/q/id/57240/t/2

3. http://jon.oberheide.org/blog/2011/03/07/how-i-
almost-won-pwn2own-via-xss/

4. http://developer.apple.com/iphone/
5. Secure iOS coding – “Hacking and Securing iOS

Applications” by Jonathan Zdziarski.
6. Secure Android coding – basic secure Java coding.
7. http://www.cse.ucsd.edu/~hovav/talks/blackhat08.htm

l
8. http://radar.oreilly.com/2009/04/itunes�]app�]store

�]billionth�]download.html)
9. https://www.owasp.org/index.php/OWASP_Mobile_S

ecurity_Project

580

