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Abstract

Rational solutions for a q-difference analogue of the Painlevé III equation are consi-
dered. A Determinant formula of Jacobi–Trudi type for the solutions is constructed.

1 Introduction

This paper is the second half of the work on a q-difference Painlevé III equation (q-PIII),

f1 =
q2N+1c2

f0f1

1 + a0q
nf0

a0qn + f0
,

f0 =
q2N+1c2

f0f1

a1q
−n+ν + f1

1 + a1q−n+νf1
, (1.1)

where fi = fi(n; ν,N) (i = 0, 1) are dependent variables, n ∈ Z is the independent
variable, ν,N ∈ Z are parameters, and q, a0, a1, c are constants. Moreover, fi and fi

denote fi(n+ 1; ν,N) and fi(n− 1; ν,N), respectively.
In the previous paper [6], we have discussed the derivations, symmetry and particular

solutions of Riccati type of q-PIII (1.1). In this paper, we consider the rational solutions.
We remark that q-PIII (1.1) appears as a dynamical system on certain rational surface

(“Mul.6 surface” in Sakai’s classification [27]). Moreover, q-PIII admits a symmetry of
(extended) affine Weyl group of type A

(1)
1 ×A

(1)
1 as a group of Bäcklund transformations,

which is the same type as that for the Painlevé III equation (PIII).
The six Painlevé equations (PJ, J = I, II, . . . ,VI), except for PI, admit two classes of

classical solutions for special values of parameters; one is so-called transcendental classical
solutions, namely, one-parameter family of particular solutions expressible in terms of
classical special functions of hypergeometric type. Another class is algebraic or rational
solutions.

There are two classes among algebraic or rational solutions. One class consists of such
solutions that can be regarded as special case of transcendental classical solutions. Another
class of solutions are expressed in terms of log derivative or ratio of certain characteristic
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polynomials (after some change of independent variable), and satisfy recurrence relations
of Toda type. We call such polynomials “special polynomials” for the Painlevé equa-
tions. They are sometimes referred as Yablonskii–Vorob’ev polynomials for PII, Okamoto
polynomials for PIV, Umemura polynomials for PIII, PV and PVI.

It may be natural then to ask a question: what are those special polynomials? One
answer is that the special polynomials are specialization of the Schur function or its gen-
eralizations. Such description has been established through the Jacobi–Trudi type deter-
minant formulas for the special polynomials. Moreover, the entries are expressed in terms
of classical special polynomials [7, 10, 11, 16, 18, 20, 21, 29].

Compared to the continuous case, the amount of known results for discrete Painlevé
equations is not so much. Although it is not difficult to construct rational solutions if we
have Bäcklund transformations of given discrete Painlevé equation (a systematic method
to construct Bäcklund transformations is given in [5]), construction of determinant formu-
las and identifying the special polynomials as classical object sometimes contain technical
difficulty. So far the rational solutions are systematically discussed for the standard dis-
crete Painlevé II equation [12], a q-difference Painlevé IV equation [8, 9] and a q-difference
Painlevé V equation [17] (determinant formula for rational solutions of standard discrete
Painlevé IV equation is conjectured in [4]).

The purpose of this paper is to construct a class of rational solutions for q-PIII (1.1)
and present a determinant formula of Jacobi–Trudi type.

This paper is organized as follows. In Section 2 we give a brief review for rational
solutions of PIII and show that all the rational solutions admit determinant formula of
Jacobi–Trudi type. In Section 3 we construct a class of rational solutions for q-PIII and
present the Jacobi–Trudi type determinant formula, which is the main result of this paper.
We give the proof in Section 4.

2 Rational solutions of PIII

It is known that the Painlevé III equation (PIII),

d2v

dx
=

1
v

(
dv

dx

)2

− 1
x

dv

dx
+

1
x

(
αv2 + β

)
+ γv3 +

δ

v
, γ = −δ = 4, (2.1)

admits a class of rational solutions expressible in terms of determinant of Jacobi–Trudi
type associated with the two-core partition λ = (N,N − 1, . . . , 1).

Theorem 1 ([7]). Let pk(x, s), k ∈ Z be polynomials in x defined by

∞∑
k=0

pk(x, s)λk = (1 + λ)s+1/2e2xλ, k ≥ 0, pk(x, s) = 0, k < 0. (2.2)

For each N ∈ Z≥0, we define a polynomial UN (x, s) by

UN (x, s) =

∣∣∣∣∣∣∣∣∣

pN (x, s) pN+1(x, s) · · · p2N−1(x, s)
pN−2(x, s) pN−1(x, s) · · · p2N−3(x, s)

...
...

. . .
...

p−N+2(x, s) p−N+3(x, s) · · · p1(x, s)

∣∣∣∣∣∣∣∣∣
, U0 = 1. (2.3)
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Then,

v =
UN (x, s− 1)UN−1(x, s)
UN (x, s)UN−1(x, s− 1)

, (2.4)

satisfies PIII (2.1) with α = 4(s+N), β = 4(−s+N).

This theorem asserts that a class of rational solutions of PIII is given by ratio of spe-
cialization of the Schur functions associated with partition λ = (N,N −1, . . . , 1). We note
that pk(x, s) is nothing but the Laguerre polynomial L(s+1/2−k)

k (−2x). The polynomials
UN (x, s) (after some rescaling) are sometimes called the Umemura polynomials for PIII.

It may not be meaningless to state here that the above solutions essentially cover all the
rational solutions of PIII. Classification of rational solutions for PIII is discussed in [3, 19].
According to [19], the result is summarized as follows.

Theorem 2 ([19]). 1. Let α = −4θ∞ and β = 4(θ0 + 1) in PIII (2.1). Then PIII admits
rational solutions if and only if there exists an integer I such that (i) θ∞ + θ0 +1 = 2I or
(ii) θ∞ − θ0 − 1 = 2I.

2. If PIII has rational solutions, then the number of rational solutions for each (θ∞,θ0)
is two or four. Furthermore, PIII admit four rational solutions if and only if there exists
two integers I and J such that θ∞ + θ0 + 1 = 2I and θ∞ − θ0 − 1 = 2J .

Obviously, the solutions in Theorem 1 correspond to the case (ii) with I ≤ 0, since in
this case (θ∞, θ0) is given by (θ∞, θ0) = (−s − N,−s + N − 1) with N ∈ Z≥0. We next
remark that if we define UN (N < 0) by

UN = (−1)N(N+1)/2U−N−1, (2.5)

then Theorem 1 is extended to all N ∈ Z. In fact, Theorem 1 was proved based on the
fact that if UN satisfies the Toda equation,

(2N + 1)UN+1UN−1 = −x

2

[
d2UN

dx

2

UN −
(
dUN

dx

)2
]

− 1
2
dUN

dx
UN +

(
2x+ s+

1
2

)
U2

N , (2.6)

with the initial condition,

U−1 = U0 = 1, (2.7)

then v = UN (x,s−1)UN−1(x,s)
UN (x,s)UN−1(x,s−1) satisfies PIII for N ∈ Z>0. This fact is easily generalized to

N ∈ Z by extending UN according to the Toda equation (2.6) to N ∈ Z<0. Therefore,
the rational solutions in Theorem 1 with the extension (2.5) cover one class of rational
solutions of the case (ii).

According to Theorem 2, there must be another class of rational solutions for the
case (ii). However, noticing that PIII (2.1) admits a Bäcklund transformation,

(θ∞, θ0) �→ (θ∞, θ0) = (−θ0 − 1,−θ∞ − 1), (x, v) �→ (u, V ) = (x,−1/v), (2.8)
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we see that V = −UN (x,−s)UN−1(x,−s−1)
UN (x,−s−1)UN−1(x,−s) also satisfies PIII with (θ∞, θ0) = (−s − N,−s +

N − 1). Since it is clear that v and V give different functions, we obtain two rational
solutions for each (θ∞, θ0) = (−s−N,−s+N − 1) which cover the case (ii).

Rational solutions for the case (i) are obtained from those for the case (ii) by the
following Bäcklund transformation,

(θ∞, θ0) �→ (θ∞, θ0) = (−θ∞, θ0), (x, v) �→ (u, V ) = (ξx, ξv), ξ = ±i. (2.9)

This implies that for each integer N , the functions

v = i
UN (x/i, s− 1)UN−1(x/i, s)
UN (x/i, s)UN−1(x/i, s− 1)

, v = −i
UN (x/i,−s)UN−1(x/i,−s− 1)
UN (x/i,−s− 1)UN−1(x/i,−s)

, (2.10)

give two rational solutions for (θ∞, θ0) = (−s+N − 1, s+N), which cover the case (i).
Summarizing the discussions above, we arrive at the following conclusion:

Theorem 3. Let UN (x, s) (N ∈ Z) be polynomials in x defined by equations (2.2), (2.3)
and (2.5). Then, all the rational solutions for PIII are given as follows:

1. For any integer N ,

v =
UN (x, s− 1)UN−1(x, s)
UN (x, s)UN−1(x, s− 1)

, v = −UN (x,−s)UN−1(x,−s− 1)
UN (x,−s− 1)UN−1(x,−s)

, (2.11)

give two rational solutions of PIII with (θ∞, θ0) = (−s−N,−s+N − 1).
2. For any integer N ,

v = i
UN (x/i, s− 1)UN−1(x/i, s)
UN (x/i, s)UN−1(x/i, s− 1)

,

v = −i
UN (x/i,−s)UN−1(x/i,−s− 1)
UN (x/i,−s− 1)UN−1(x/i,−s)

, (2.12)

give two rational solutions of PIII with (θ∞, θ0) = (s+N,−s+N − 1).
3. For any integers M and N ,

v =
UN (x,M − 1)UN−1(x,M)
UN (x,M)UN−1(x,M − 1)

,

v = −UN (x,−M)UN−1(x,−M − 1)
UN (x,−M − 1)UN−1(x,−M)

,

v = i
UM (x/i,−N)UM−1(x/i,−N − 1)
UM (x/i,−N − 1)UM−1(x/i,−N)

,

v = −i
UM (x/i,N − 1)UM−1(x/i,N)
UM (x/i,N)UM−1(x/i,N − 1)

, (2.13)

give four rational solutions PIII with (θ∞, θ0) = (−M −N,−M +N − 1).

Remark 1. The case γδ = 0 of PIII (2.1) should be distinguished from other cases
because of the essential difference of type of “space of initial conditions” [27], namely,
defining manifold of the equation. More precisely, PIII should be divided into four cases;
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(i) α = 0, γ = 0 (or β = 0, δ = 0), (ii) Type D7 (γ = 0, αδ �= 0 or δ = 0, βγ �= 0),
(iii) Type D8 (γ = δ = 0, αβ �= 0), (iv) Type D6 (generic case)

First, in the case (i) PIII is known to be solvable by quadratures [1, 13, 25]. Second,
type D8 does not admit any classical solutions except for two trivial constant solutions [24].
Also, type D7 does not admit transcendental classical solutions [24, 28]. Algebraic solu-
tions for type D7 have been studied by many authors [1, 2, 13, 14, 24], but we do not
discuss this class of solutions in this paper.

3 Rational solutions of q-PIII

In this section we construct a class of rational solutions of q-PIII. For notational simplicity,
we introduce

z = a0q
n, y = a0a1q

ν , (3.1)

and write equation (1.1) as

f1(qz; y, c) =
c2

f0(z; y, c)f1(z; y, c)
1 + zf0(n; ν, c)
z + f0(n; ν, c)

,

f0(z/q; y, c) =
c2

f0(z; y, c)f1(z; y, c)
y/z + f1(z; y, c)
1 + y/zf1(z; y, c)

. (3.2)

A Bäcklund transformation is presented in [6, 8] as

f0(z; y, qc) = y f1(z; y, c)
1 + q/y f2(n; ν, c) + qz/y f2(z; y, c)f0(z; y, c)

1 + z f0(z; y, c) + y f0(z; y, c)f1(z; y, c)
,

f1(z; y, qc) = q/z f2(z; y, c)
1 + z f0(n; ν, c) + y f0(z; y, c)f1(z; y, c)

1 + y/z f1(z; y, c) + q/z f1(z; y, c)f2(z; y, c)
, (3.3)

where f2(z; y, c) = c2/(f0(z; y, c)f1(z; y, c)).
Now we see that equation (3.2) admits a trivial solution,

f0 = f1 = 1, c = 1. (3.4)

Applying the Bäcklund transformation (3.3), we observe that

f0(z; y, q) =
y + qz + q

1 + y + z
= q

ψ1(y/q, z)
ψ1(y, z)

,

f1(z; y, q) = q
1 + y + z

y + z + q
=

ψ1(y, z)
ψ1(y/q, z/q)

, (3.5)

where

ψ1(y, z) = y + z + 1, (3.6)

is also a solution for c = q. Similarly, one can construct higher order rational solutions as,

f0

(
z; y, q2

)
= q2ψ1(y, z)ψ2(y/q, z)

ψ1(y/q, z)ψ2(y, z)
, f1

(
z; y, q2

)
=

ψ1(y/q, z/q)ψ2(y, z)
ψ1(y, z)ψ2(y/q, z/q)

, (3.7)
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f0

(
z; y, q3

)
= q2ψ2(y, z)ψ3(y/q, z)

ψ2(y/q, z)ψ3(y, z)
, f1

(
z; y, q3

)
=

ψ2(y/q, z/q)ψ3(y, z)
ψ2(y, z)ψ3(y/q, z/q)

, (3.8)

where ψ2(y, z) and ψ3(y, z) are polynomials in y and z given by

ψ2(y, z) = y3 +
(
q + 1 + q−1

)
y2z +

(
q + 1 + q−1

)
yz2 + z3

+
(
q + 1 + q−1

) (
y2 + 2yz + z2

)
+

(
q + 1 + q−1

)
(y + z) + 1, (3.9)

ψ3(y, z) = y6 + y5z
(
q + 1 + q−1

) (
q + q−1

)
+ y4z2

(
q2 + q + 1 + q−1 + q−2

) (
q + 1 + q−1

)
+ 2y3z3

(
q2 + q + 1 + q−1 + q−2

) (
q + q−1

)
+ y2z4

(
q2 + q + 1 + q−1 + q−2

) (
q + 1 + q−1

)
+ yz5

(
q + 1 + q−1

) (
q + q−1

)
+ z6

+
(
q + 1 + q−1

) {(
y5(q + q−1

)
+ 2y4z

(
q2 + q + 1 + q−1 + q−2

)
+ y3z2

(
q2 + q + 1 + q−1 + q−2

) (
q1/2 + q−1/2

)2

+ y2z3
(
q2 + q + 1 + q−1 + q−2

) (
q1/2 + q−1/2

)2

+ 2yz4
(
q2 + q + 1 + q−1 + q−2

)
+ z5

(
q + q−1

)}
+

(
q2 + q + 1 + q−1 + q−2

) (
q + 1 + q−1

)
×

{
y4 + y3z

(
q1/2 + q−1/2

)2
+ 2y2z2

(
q + 1 + q−1

)
+ yz3

(
q1/2 + q−1/2

)2
+ z4

}
+

(
q2 + q + 1 + q−1 + q−2

)
×

{
2y3

(
q + q−1

)
+ y2z

(
q + 1 + q−1

) (
q1/2 + q−1/2

)2

+ yz2
(
q + 1 + q−1

) (
q1/2 + q−1/2

)2
+ 2z3

(
q + q−1

)}
+

(
q2 + q + 1 + q−1 + q−2

) (
q + 1 + q−1

) (
y2 + 2yz + z2

)
+

(
q + 1 + q−1

) (
q + q−1

)
(y + z) + 1, (3.10)

respectively. In general, we see that f0

(
z; y, qN

)
and f1

(
z; y, qN

)
(N ∈ Z>0) may be

factorized as

f0

(
z; y, qN

)
= qN ψN−1(y, z)ψN (y/q, z)

ψN−1(y/q, z)ψN (y, z)
,

f1

(
z; y, qN

)
=

ψN−1(y/q, z/q)ψN (y, z)
ψN−1(y, z)ψN (y/q, z/q)

, (3.11)

respectively, where ψN (y, z) is a polynomial in y and z with the following nice properties:
(1) ψN (y, z) is a polynomial of degree N(N +1)/2; (2) ψN (y, z) is symmetric with respect
to y and z; (3) ψN (y, z) is symmetric with respect to q and q−1.

Now we present a determinant formula of Jacobi–Trudi type for the above polynomials.
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Theorem 4. Let pk(y, z) (k ∈ Z) be polynomials in y and z defined by

∞∑
n=0

pn(y, z)tn =
(−(1− q)t; q)∞

((1− q)yt; q)∞((1− q)zt; q)∞
, pk(y, z) = 0, for k < 0, (3.12)

where (a; q)∞ is given by

(a; q)∞ =
∞∏
i=0

(
1− aqi

)
. (3.13)

For each N ∈ Z, we define a polynomial φN (y, z) by

φN (y, z) =




∣∣∣∣∣∣∣∣∣

pN (y, z) pN+1(y, z) · · · p2N−1(y, z)
pN−2(y, z) pN−1(y, z) · · · p2N−3(y, z)

... · · · . . .
...

p−N+2(y, z) p−N+3(y, z) · · · p1(y, z)

∣∣∣∣∣∣∣∣∣
, N > 0,

1, N = 0,

(−1)N(N+1)/2φ−N−1, N < 0.

(3.14)

Then,

f0

(
z; y, qN

)
= qN φN−1(y, z)φN (y/q, z)

φN−1(y/q, z)φN (y, z)
,

f1

(
z; y, qN

)
=

φN−1(y/q, z/q)φN (y, z)
φN−1(y, z)φN (y/q, z/q)

, (3.15)

satisfy q-PIII (3.2) with c = qN .

Remark 2. 1. Two polynomials ψN (y, z) and φN (y, z) are related as

ψN (y, z) = cN φN (y, z), cN = q−
(N−1)N(N+1)

6

N∏
k=1

[2k − 1]!!, (3.16)

where

[k] =
1− qk

1− q
, [2k − 1]!! = [2k − 1][2k − 3] · · · [3][1]. (3.17)

In terms of the “hook-length” hi,j for the partition λ = (λ1, λ2, . . .) = (N,N−1, . . . , 1) [15],
the constant cN is also expressed as

cN = q−
∑

i(i−1)λi
∏

(i,j)∈λ

[hi,j ]. (3.18)

2. φN (y, z) is quite similar to the q-Schur function associated with two-core partition
λ = (N,N − 1, . . . , 1) which appears in the rational solutions for q-KP hierarchy [9].
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However, they are different due to the factor (−(1 − q)t; q)∞ in the numerator of the
generating function in equation (3.12). The first few pk(y, z) are given by,

p0(y, z) = 1, (3.19)
p1(y, z) = y + z + 1, (3.20)

p2(y, z) =
y2

1 + q
+ yz +

z2

1 + q
+ y + z +

q

1 + q
, (3.21)

p3(y, z) =
y3

(1 + q + q2)(1 + q)
+

y2z

1 + q
+

yz2

1 + q
+

z3

(1 + q + q2) (1 + q)

+
y2

1 + q
+ yz +

z2

1 + q
+

yq

1 + q
+

zq

1 + q
+

q3

(1 + q + q2) (1 + q)
, (3.22)

p4(y, z) =
y4

(1 + q + q2 + q3) (1 + q + q2) (1 + q)
+

y3z

(1 + q + q2) (1 + q)
+

y2z2

(1 + q)2

+
yz3

(1 + q + q2) (1 + q)
+

z4

(1 + q + q2 + q3) (1 + q + q2) (1 + q)

+
y3

(1 + q + q2) (1 + q)
+

y2z

1 + q
+

yz2

1 + q
+

z3

(1 + q + q2) (1 + q)

+
y2q

(1 + q)2
+

yzq

1 + q
+

z2q

(1 + q)2

+
yq3

(1 + q + q2) (1 + q)
+

zq3

(1 + q + q2) (1 + q)

+
q6

(1 + q + q2 + q3) (1 + q + q2) (1 + q)
. (3.23)

Moreover, from equation (3.12), pk(y, z) satisfy the following contiguity relations,(
1 + q + · · ·+ qk−1

)
pk(y, z)

=
(
y + z + qk−1

)
pk−1(y, z)− (1− q)yzpk−2(y, z), (3.24)

pk(y, qz)− pk(y, z) = (q − 1)zpk−1(y, z), (3.25)
pk(qy, z)− pk(y, z) = (q − 1)ypk−1(y, z). (3.26)

Theorem 4 is a direct consequence of the following “multiplicative formula”.

Proposition 1. The functions f0

(
z; y, qN

)
and f1

(
z; y, qN

)
defined by equation (3.15)

satisfy the following equations:

1 + z f0

(
z; y, qN

)
= (1 + z)

φN−1(y/q, z/q)φN (y, qz)
φN−1(y/q, z)φN (y, z)

, (3.27)

1 +
1
z
f0

(
z; y, qN

)
= qN

(
1 +

1
z

)
φN−1(y, qz)φN (y/q, z/q)
φN−1(y/q, z)φN (y, z)

, (3.28)

1 +
y

z
f1

(
z; y, qN

)
=

(
1 +

y

z

) φN−1(y/q, z)φN (y, z/q)
φN−1(y, z)φN (y/q, z/q)

, (3.29)

1 +
z

y
f1

(
z; y, qN

)
=

(
1 +

z

y

)
φN−1(y, z/q)φN (y/q, z)
φN−1(y, z)φN (y/q, z/q)

. (3.30)
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In fact, it is easy to check that q-PIII (3.2) follows from Proposition 1 and equa-
tion (3.15). Moreover, Proposition 1 is derived from the bilinear difference equations
satisfied by φN (x, y).

Proposition 2. The function φN (y, z) defined by equations (3.12) and (3.14) satisfies the
following bilinear difference equations:

φN+1(y, z)φN (y/q, z) + qN+1zφN+1(y/q, z)φN (y, z)
= (1 + z)φN+1(y, qz)φN (y/q, z/q), (3.31)

q−N−1zφN+1(y, z)φN (y/q, z) + φN+1(y/q, z)φN (y, z)
= (1 + z)φN+1(y/q, z/q)φN (y, qz), (3.32)

zφN+1(y/q, z/q)φN (y, z) + yφN+1(y, z)φN (y/q, z/q)
= (y + z)φN+1(y, z/q)φN (y/q, z), (3.33)

yφN+1(y/q, z/q)φN (y, z) + zφN+1(y, z)φN (y/q, z/q)
= (y + z)φN+1(y/q, z)φN (y, z/q). (3.34)

Multiplicative formulas (3.27)–(3.30) are derived from equations (3.31)–(3.34), respec-
tively, by shiftingN toN−1, and dividing the both sides by the first term of each equation.
Therefore, we have to prove Proposition 2 in order to establish Theorem 4, which will be
given in the next section.

4 Proof of Proposition 2

In the previous section, we have presented Theorem 4 and shown that it is derived from
Proposition 2. In this section, we will prove Proposition 2 by reducing the bilinear equa-
tions (3.31)–(3.34) to the Plücker relations, namely, quadratic identities among determi-
nants whose columns are properly shifted. However, since equations (3.31)–(3.34) them-
selves are not directly reduced to the Plücker relations, we will prove the following set of
bilinear difference equations instead.

Proposition 3. The function φN (y, z) defined by equations (3.12) and (3.14) satisfies the
following bilinear difference equations:

yφN+1(y/q, z)φN (y, z/q)− zφN+1(y, z/q)φN (y/q, z)
= (y − z)φN+1(y/q, z/q)φN (y, z), (4.1)

yφN+1(y, z/q)φN (y/q, z)− zφN+1(y/q, z)φN (y, z/q)
= (y − z)φN+1(y, z)φN (y/q, z/q), (4.2)

q−N−1zφN+1(y, z)φN (y/q, z) + φN+1(y/q, z)φN (y, z)
= (1 + z)φN+1(y/q, z/q)φN (y, qz), (4.3)

φN+1(y/q, z)φN−1(y, z)− φN+1(y, z)φN−1(y/q, z)
= (1− q)y/qφN (y/q, z)φN (y, z), (4.4)

φN+1(y, z/q)φN−1(y, z)− φN+1(y, z)φN−1(y, z/q)
= (1− q)z/qφN (y, z/q)φN (y, z), (4.5)
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q2NyφN (y/q, z)φN (y, z) + qN (1 + z)φN (y, qz)φN (y/q, z/q)

=
1− q2N+1

1− q
φN+1(y, z)φN−1(y/q, z). (4.6)

In fact, the bilinear difference equations (3.31)–(3.34) in Proposition 2 are derived
from equations (4.1)–(4.6) as follows. Equation (3.33) is derived by adding equation (4.1)
multiplied by z to equation (4.2) multiplied by y. Similarly, we get equation (3.34) by
adding equation (4.1) multiplied by y to equation (4.2) multiplied by z. Equation (4.3) is
the same as equation (3.32). Finally, equation (3.31) is derived from equations (4.3)–(4.6)
as follows,

φN+1(y, qz)φN (y/q, z/q)

=
φN+1(y, z)φN−1(y, qz)− (1− q)zφN (y, z)φN (y, qz)

φN−1(y, z)
× φN (y/q, z/q)

=
φN+1(y, z)
φN−1(y, z)

×
[
q−Nz

1 + z
φN (y, z)φN−1(y/q, z) +

1
1 + z

φN (y/q, z)φN−1(y, z)
]

− (1− q)z
φN (y, z)φN (y, qz)φN (y/q, z/q)

φN−1(y, z)

=
φN (y, z)

φN−1(y, z)
× q−Nz

1 + z
× [φN+1(y, z)φN−1(y/q, z)

− (1− q)qN (1 + z)φN (y, qz)φN (y/q, z/q)
]
+

1
1 + z

φN+1(y, z)φN (y/q, z)

=
φN (y, z)

φN−1(y, z)
× q−Nz

1 + z
× [

(1− q)q2NyφN (y/q, z)φN (y, z)

+ q2N+1φN+1(y, z)φN−1(y/q, z)
]
+

1
1 + z

φN+1(y, z)φN (y/q, z)

=
φN (y, z)

φN−1(y, z)
× qN+1z

1 + z
× φN+1(y/q, z)φN−1(y, z) +

1
1 + z

φN+1(y, z)φN (y/q, z)

=
1

1 + z

[
qN+1zφN+1(y/q, z)φN (y, z) + φN+1(y, z)φN (y/q, z)

]
,

where we have used equation (4.5) with q → qz in the first equality, equation (4.3) with
N → N−1 in the second equality, equation (4.6) in the fourth equality and equation (4.4)
in fifth equality, respectively.

Remark 3. The set of equations equations (4.1)–(4.5) is invariant with respect to the
transformation,

N �→ M = −N, (4.7)

from the relation φN = (−1)N(N+1)/2φ−N−1. Equation (4.6) itself is not invariant with
respect to this transformation, but if we consider the bilinear equation,

q−2(N+1)yφN (y/q, z)φN (y, z) + q−(N+1)(1 + z)φN (y, qz)φN (y/q, z/q)

= −1− q−(2N+1)

1− q
φN−1(y, z)φN+1(y/q, z), (4.8)
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then the set of equations (4.6) and (4.8) is invariant. Equation (4.8) is derived by com-
bining equations (4.4)–(4.6). From this symmetry of bilinear equations, we only have to
prove Proposition 3 for N ∈ Z≥0.

Proposition 3 is proved by using a technique of determinants which was used in the
previous paper [6]. Namely, we first prepare “difference formulas” which relate φN (y, z)
with some determinants whose columns are properly shifted from original φN (y, z). Then
choosing suitable Plücker relations, we obtain bilinear difference equations with the aid of
the difference formulas. For simpler application of this technique, we refer [22, 23] where
it is used to construct solutions for discrete KP and relativistic Toda lattice equations,
respectively.

In this section, we demonstrate the derivation of equation (4.1) as an example. Since
other bilinear equations in Proposition 3 are derived by using similar technique, we give
the complete proof in the appendix.

Let us first introduce a notation,

φN (y, z) =

∣∣∣∣∣∣∣∣∣

pN (y, z) pN+1(y, z) · · · p2N−1(y, z)
...

...
. . .

...
p−N+4(y, z) p−N+5(y, z) · · · p3(y, z)
p−N+2(y, z) p−N+3(y, z) · · · p1(y, z)

∣∣∣∣∣∣∣∣∣
(4.9)

=
∣∣∣−N + 2 y

z
,−N + 3 y

z
, · · · ,0 y

z
,1 y

z

∣∣∣ , (4.10)

where the symbol k y
z
denotes the column vector which ends with pk(y, z),

k y
z
=




...
pk+2(y, z)
pk(y, z)


 . (4.11)

We note that the subscripts are used to describe the shift of y and z, and they will be
suppressed when there is no shift. Moreover, although the height of the column vectors
are N in equation (4.10), we use the same symbol for the determinant with different size.
So the height of k should be read appropriately case by case.

By using this notation, we present a difference formula.

Lemma 1 (Difference Formula I).

|−N + 2,−N + 3, . . . ,0,1| = φN (y, z), (4.12)∣∣−N + 2y/q,−N + 3, . . . ,0,1
∣∣ = φN (y/q, z), (4.13)∣∣−N + 2z/q,−N + 3, . . . ,0,1
∣∣ = φN (y, z/q), (4.14)∣∣−N + 3y/q,−N + 3, . . . ,0,1
∣∣ = (1− q)y/qφN (y/q, z), (4.15)∣∣−N + 3z/q,−N + 3, . . . ,0,1
∣∣ = (1− q)z/qφN (y, z/q), (4.16)∣∣−N + 3z/q,−N + 3y/q,−N + 4 . . . ,0,1

∣∣ = (1− q)/q(z − y)φN (y/q, z/q). (4.17)

Proof. Equation (4.12) is nothing but equation (4.10). We next shift y → y/q in equa-
tion (4.10). Then, subtracting (k−1)-st column multiplied by (1−q)y/q from k-th column
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for k = N,N − 1, . . . , 2 and using the contiguity relation (3.26), we have

φN (y/q, z) = | − N + 2y/q,−N + 3y/q, . . . ,0y/q,1y/q − (1− q)y/q · 0y/q|
= | − N + 2y/q,−N + 3y/q, . . . ,0y/q,1|
= · · ·
= | − N + 2y/q,−N + 3, . . . ,0,1|,

which is equation (4.13). Moreover, in the last equality, adding the second column to the
first column multiplied by (1− q)y/q, and using the contiguity relation (3.26), we have

(1− q)y/qφN (y/q, z) = |(1− q)y/q × (−N + 2y/q) + (−N + 3),−N + 3, . . . ,0,1|
= | − N + 3y/q,−N + 3, . . . ,0,1|,

which is equation (4.14). Equations (4.15) and (4.16) are derived by the same procedure
by using the contiguity relation (3.25). Finally, shifting y → y/q in equation (4.16),
subtracting (k − 1)-st column multiplied by (1− q)y/q from k-th column for k = N,N −
1, . . . , 3 and using the contiguity relation (3.26), we have

(1− q)z/qφN (y/q, z/q) = | − N + 3 y/q
z/q

,−N + 3y/q,−N + 4y/q, . . . ,0y/q,1y/q|
= | − N + 3 y/q

z/q

,−N + 3y/q,−N + 4, . . . ,0,1|.

Multiplying the first column by z− y and using the contiguity relation which follows from
equations (3.26) and (3.25),

zpk(y, z/q)− ypk(y/q, z) = (z − y)pk(y/q, z/q), (4.18)

we obtain

(1− q)z/q(z − y)φN (y/q, z/q)
= |(z − y)× (−N + 3 y/q

z/q

),−N + 3y/q,−N + 4, . . . ,0,1|
= |z × (−N + 3z/q)− y × (−N + 3y/q),−N + 3y/q,−N + 4, . . . ,0,1|
= z| − N + 3z/q,−N + 3y/q,−N + 4, . . . ,0,1|,

which is equation (4.17). This completes the proof of Lemma 1. �

Consider the Plücker relation,

0 = |ϕ,−N + 2,−N + 3, . . . ,1| × ∣∣−N + 2z/q,−N + 2y/q,−N + 3, . . . ,1
∣∣ (4.19)

− ∣∣−N + 2z/q,−N + 2,−N + 3, . . . ,1
∣∣ × ∣∣ϕ,−N + 2y/q,−N + 3, . . . ,1

∣∣
+

∣∣−N + 2y/q,−N + 2,−N + 3, . . . ,1
∣∣ × ∣∣ϕ,−N + 2z/q,−N + 3, . . . ,1

∣∣ ,
where ϕ is the column vector,

ϕ =




1
0
...
0


 . (4.20)
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After expanding the determinants according to the column ϕ, we apply Lemma 1 to
equation (4.19). Then we obtain,

0 = φN (y, z)× (1− q)/q(z − y)φN+1(y/q, z/q)
− (1− q)z/qφN+1(y/q, z)× φN (y/q, z) + (1− q)y/qφN+1(y, z/q)× φN (y, z/q),

which yields equation (4.1). For the derivation of equations (4.2)–(4.6), see appendix.

5 Concluding remarks

In this and previous [6] papers, we have considered q-PIII and shown that it has the
following properties:

• q-PIII is derived from the (generalization of) discrete-time relativistic Toda lattice.

• q-PIII and q-PIV are realized as the dynamical systems on the root lattice of type
A

(1)
1 ×A

(1)
2 . The former equation describes the Bäcklund (Schlesinger) transformation

of the latter, and vice versa.

• q-PIII admits symmetry of affine Weyl group of type A
(1)
1 × A

(1)
1 as the group of

Bäcklund transformations.

• q-PIII admits two classes of Riccati type solutions. One class consists of such solu-
tions that are expressed by Jackson’s q-modified Bessel functions. These solutions
are also the solutions for q-PIV. Another class consists of q-PIII specific solutions.
Those classes of solutions admit determinant formula of Hankel or Toeplitz type.

• q-PIII admits rational solutions which are expressed by ratio of some subtraction-
free special polynomials. Those special polynomials admit determinant formula of
Jacobi–Trudi type associated with two-core partition.

It might be an interesting problem to find connections or applications of q-PIII to other
fields of mathematical and physical sciences, such as q-orthogonal polynomials, matrix
integrations or discrete geometry. Moreover, there are many discrete Painlevé equations
to be studied in Sakai’s classification [27]. It might be an important problem to consider
their solutions, in particular, solutions for the equations with larger symmetries than q-
PVI, which are expected to be beyond the hypergeometric world [26].
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A Proof of bilinear equations

In this appendix, we give the data which are necessary for proving the bilinear equations in
Proposition 3. Following the procedure mentioned in Section 4, we first give the difference
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formulas. We introduce the following notations of column vectors in order to describe
them:

[k]y =




...
p5

(
y, qkz

)
p3

(
y, qkz

)
p1

(
y, qkz

)


 , [k′]y =




...
q5p5

(
y, qkz

)
q3p3

(
y, qkz

)
qp1

(
y, qkz

)


 , (A.1)

[k]y =




...
p4

(
y, qkz

)
p2

(
y, qkz

)
p0

(
y, qkz

)


 , [k′]y =




...
q4 1−q

1−q3 p4

(
y, qkz

)
q2 1−q

1−q2 p2

(
y, qkz

)
q0 1−q

1−q1 p0

(
y, qkz

)


 . (A.2)

Note that the subscript y is used for describing the shift of y and it will be suppressed
when there is no shift. Moreover, although heights of the column vectors are not specified
in equations (A.1) and (A.2), they should be read appropriately case by case. For exam-
ple, the symbols |[N − 1], [N − 2], . . . , [1], [0]| and ∣∣[N ], [N − 1], . . . , [1], [0]

∣∣ denote the
following determinants,

|[N − 1], [N − 2], . . . , [1], [0]|

=

∣∣∣∣∣∣∣∣∣∣∣

p2N−1

(
y, qN−1z

)
p2N−1

(
y, qN−2z

) · · · p2N−1(y, qz) p2N−1(y, z)
p2N−3

(
y, qN−1z

)
p2N−3

(
y, qN−2z

) · · · p2N−3(y, qz) p2N−3(y, z)
...

... · · · ...
...

p3

(
y, qN−1z

)
p3

(
y, qN−2z

) · · · p3(y, qz) p3(y, z)
p1

(
y, qN−1z

)
p1

(
y, qN−2z

) · · · p1(y, qz) p1(y, z)

∣∣∣∣∣∣∣∣∣∣∣
,

∣∣[N ], [N − 1], . . . , [1], [0]
∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

p2N

(
y, qNz

)
p2N

(
y, qN−1z

) · · · p2N (y, qz) p2N (y, z)
p2N−2

(
y, qNz

)
p2N−2

(
y, qN−1z

) · · · p2N−2(y, qz) p2N−2(y, z)
...

... · · · ...
...

p2

(
y, qNz

)
p2

(
y, qN−1z

) · · · p2(y, qz) p2(y, z)
p0

(
y, qNz

)
p0

(
y, qN−1z

) · · · p0(y, qz) p0(y, z)

∣∣∣∣∣∣∣∣∣∣∣
,

respectively.
By using these notations, we present difference formulas.

Lemma 2 (Difference Formula II).

|[N − 1], [N − 2], . . . , [1], [0]|
= (q − 1)

N(N−1)
2 z

N(N−1)
2 q

(N−2)(N−1)N
6 φN (y, z), (A.3)∣∣[N − 1], . . . , [2], [1], [0′]y/q

∣∣
= (−1)N−1(q − 1)

N(N−1)
2 z

(N−1)(N−2)
2 q

N(N2+5)
6 φN (y/q, z), (A.4)∣∣[N − 1], . . . , [2], [1], [1′]y/q

∣∣
= (−1)N−1(q − 1)

N(N−1)
2 z

(N−1)(N−2)
2 q

N(N2+5)
6 (1 + qz)φN (y/q, z). (A.5)
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Lemma 3 (Difference Formula III).∣∣[N ], [N − 1], . . . , [1], [0]
∣∣ = {(q − 1)z}N(N+1)

2 q
(N−1)N(N+1)

6 φN (y, z), (A.6)∣∣∣[N ], [N − 1], . . . , [1], [0′y/q]
∣∣∣

= q
N(N+1)(N+5)

6 yN{(q − 1)z}N(N+1)
2

N+1∏
j=1

1− q

1− q2j−1
φN (y/q, z), (A.7)

∣∣∣[N ], [N − 1], · · · , [1], [1′y/q]
∣∣∣

= −q
N(N+1)(N+5)

6 yN−1{(q − 1)z}N(N+1)
2 (1 + qz)×

N+1∏
j=1

1− q

1− q2j−1
φN (y/q, z). (A.8)

We prove Lemmas 2 and 3 in the appendix B.
We next give the list of the Plücker relations and difference formulas which are necessary

for the derivation of bilinear equations (4.1)–(4.5). In the following, the symbol ϕ denotes
the column vector defined in equation (4.20).

1. Equation (4.1)
Plücker relation

0 = |ϕ,−N + 2,−N + 3, . . . ,1| × ∣∣−N + 2z/q,−N + 2y/q,−N + 3, . . . ,1
∣∣

− ∣∣−N + 2z/q,−N + 2,−N + 3, . . . ,1
∣∣ × ∣∣ϕ,−N + 2y/q,−N + 3, . . . ,1

∣∣
+

∣∣−N + 2y/q,−N + 2,−N + 3, . . . ,1
∣∣ × ∣∣ϕ,−N + 2z/q,−N + 3, . . . ,1

∣∣ . (A.9)

Difference formula Lemma 1.

2. Equation (4.2)
Plücker relation

0 = |−N + 1,−N + 2, . . . ,0,1| × ∣∣−N + 1z/q,−N + 1y/q,−N + 2, . . . ,0
∣∣

− ∣∣−N + 1z/q,−N + 1,−N + 2, . . . ,0
∣∣ × ∣∣−N + 1y/q,−N + 2, . . . ,0,1

∣∣
+

∣∣−N + 1y/q,−N + 1,−N + 2, . . . ,0
∣∣ × ∣∣−N + 1z/q,−N + 2, . . . ,0,1

∣∣ . (A.10)

Difference formula Lemma 1.

Remark. A relation

φN (y, z) =

∣∣∣∣∣∣∣∣∣

pN (y, z) pN+1(y, z) · · · p2N−1(y, z)
pN−2(y, z) pN−1(y, z) · · · p2N−3(y, z)

... · · · . . .
...

p−N+2(y, z) · · · p0(y, z) p1(y, z)

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

pN (y, z) pN+1(y, z) · · · p2N−1(y, z) p2N (y, z)
pN−2(y, z) pN−1(y, z) · · · p2N−3(y, z) p2N−2(y, z)

... · · · . . .
...

...
p−N+2(y, z) · · · p0(y, z) p1(y, z) p2(y, z)
p−N (y, z) · · · p−2(y, z) p−1(y, z) p0(y, z)

∣∣∣∣∣∣∣∣∣∣∣
(A.11)

= | − N ,−N + 1, . . . ,0|. (A.12)

is used for the derivation of equation (4.2).
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3. Equation (4.3)
Plücker relation

0 =
∣∣[N ], [N − 1], . . . , [1], [0′]y/q

∣∣ × |[N − 1], . . . , [1], [0],ϕ|
− |[N ], [N − 1], . . . , [1],ϕ| × ∣∣[N − 1], . . . , [1], [0], [0′]y/q

∣∣
− ∣∣[N − 1], . . . , [1], [0′]y/q,ϕ

∣∣ × |[N ], [N − 1], . . . , [1], [0]| . (A.13)

Difference formula Lemma 2.

4. Equation (4.4)
Plücker relation

0 =
∣∣−N + 1y/q,−N + 1,−N + 2, . . . ,0

∣∣ × |−N + 2, . . . ,0,1,ϕ|
+ |−N + 1,−N + 2, . . . ,0,1| × ∣∣−N + 1y/q,−N + 2, . . . ,0,ϕ

∣∣
− |−N + 1,−N + 2, . . . ,0,ϕ| × ∣∣−N + 1y/q,−N + 2, . . . ,0,1

∣∣ . (A.14)

Difference formula Lemma 1 with equation (A.12).

5. Equation (4.5)
Plücker relation

0 =
∣∣−N + 1z/q,−N + 1,−N + 2, . . . ,0

∣∣ × |−N + 2, . . . ,0,1,ϕ|
+ |−N + 1,−N + 2, . . . ,0,1| × ∣∣−N + 1z/q,−N + 2, . . . ,0,ϕ

∣∣
− |−N + 1,−N + 2, . . . ,0,ϕ| × ∣∣−N + 1z/q,−N + 2, . . . ,0,1

∣∣ . (A.15)

Difference formula Lemma 1 with equation (A.12).

6. Equation (4.6)
Plücker relation

0 =
∣∣[N ], [N − 1], . . . , [1], [0]

∣∣ × ∣∣∣[N − 1], . . . , [1], [0′y/q],ϕ
∣∣∣

−
∣∣∣[N ], [N − 1], . . . , [1], [0′y/q]

∣∣∣ × ∣∣[N − 1], . . . , [1], [0],ϕ
∣∣

+
∣∣[N ], [N − 1], . . . , [1],ϕ

∣∣ × ∣∣∣[N − 1], . . . , [1], [0], [0′y/q]
∣∣∣ . (A.16)

Difference formula Lemma 3.

B Proof of Lemmas 2 and 3

In this appendix, we give the proofs of difference formulas Lemmas 2 and 3.
We first rewrite the Jacobi–Trudi type determinant expression for φN (y, z) (4.9) in

terms of the Casorati determinant in z as follows.

Lemma 4.

φN (y, z) = {(q − 1)z}−N(N−1)/2 q−(N−2)(N−1)N/6

×

∣∣∣∣∣∣∣∣∣

p2N−1

(
y, qN−1z

)
p2N−1

(
y, qN−2z

) · · · p2N−1(y, qz) p2N−1(y, z)
p2N−3

(
y, qN−1z

)
p2N−3

(
y, qN−2z

) · · · p2N−3(y, qz) p2N−3(y, z)
...

... · · · ...
...

p1

(
y, qN−1z

)
p1

(
y, qN−2z

) · · · p1(y, qz) p1(y, z)

∣∣∣∣∣∣∣∣∣
. (B.1)
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Proof. In the right hand side of equation (4.9), adding (k+1)-st column to k-th column
multiplied by (q − 1)z for k = 1, . . . , N − 1 and using the contiguity relation (3.25), we
have

φN (y, z) = {(q − 1)z}−(N−1)

×

∣∣∣∣∣∣∣∣∣

pN+1(y, qz) pN+2(y, qz) · · · p2N−1(y, qz) p2N−1(y, z)
pN−1(y, qz) pN (y, qz) · · · p2N−3(y, qz) p2N−3(y, z)

...
... · · · ...

...
p−N+3(y, qz) p−N+4(y, qz) · · · p1(y, qz) p1(y, z)

∣∣∣∣∣∣∣∣∣
.

Moreover, adding (k + 1)-st column to k-th column multiplied by (q − 1)qz for k =
1, . . . , N − 2, and continuing this procedure, we finally obtain,

φN (y, z) = {(q − 1)z}−(N−1) × {(q − 1)qz}−(N−2) × · · · × {
(q − 1)qN−2z

}−1

×

∣∣∣∣∣∣∣∣∣

p2N−1

(
y, qN−1z

)
p2N−1

(
y, qN−2z

) · · · p2N−1(y, qz) p2N−1(y, z)
p2N−3

(
y, qN−1z

)
p2N−3

(
y, qN−2z

) · · · p2N−3(y, qz) p2N−3(y, z)
...

... · · · ...
...

p1

(
y, qN−1z

)
p1

(
y, qN−2z

) · · · p1(y, qz) p1(y, z)

∣∣∣∣∣∣∣∣∣
,

which is desired result. �

We put

φ̃N (y, z) =

∣∣∣∣∣∣∣∣∣

p2N−1

(
y, qN−1z

)
p2N−1

(
y, qN−2z

) · · · p2N−1(y, qz) p2N−1(y, z)
p2N−3

(
y, qN−1z

)
p2N−3

(
y, qN−2z

) · · · p2N−3(y, qz) p2N−3(y, z)
...

... · · · ...
...

p1

(
y, qN−1z

)
p1

(
y, qN−2z

) · · · p1(y, qz) p1(y, z)

∣∣∣∣∣∣∣∣∣
= {(q − 1)z}N(N−1)/2 q(N−2)(N−1)N/6φN (y, z). (B.2)

Proof of Lemma 2. Equation (B.1) is nothing but equation (A.3). In order to prove
equations (A.4) and (A.5), we use the contiguity relation,

q−kzpk(y, z) + pk(y/q, z) = (1 + z)pk(y/q, z/q), (B.3)

which follows from equations (3.24)–(3.26). Using equation (B.3) for the first column of
φ̃N (y/q, z), we have

φ̃N (y/q, z) =

∣∣∣∣∣∣∣∣∣

p2N−1

(
y/q, qN−1z

)
p2N−1

(
y/q, qN−2z

) · · · p2N−1(y/q, z)
p2N−3

(
y/q, qN−1z

)
p2N−3

(
y/q, qN−2z

) · · · p2N−3(y/q, z)
...

... · · · ...
p1

(
y/q, qN−1z

)
p1

(
y/q, qN−2z

) · · · p1(y/q, z)

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

−q−2N+1
(
qN−1z

)
p2N−1

(
y, qN−1z

)
+

(
1 + qN−1z

)
p2N−1

(
y/q, qN−2z

) · · ·
−q−2N+3

(
qN−1z

)
p2N−3

(
y, qN−1z

)
+

(
1 + qN−1z

)
p2N−3

(
y/q, qN−2z

) · · ·
... · · ·

−q−1
(
qN−1z

)
p1

(
y, qN−1z

)
+

(
1 + qN−1z

)
p1

(
y/q, qN−2z

) · · ·

∣∣∣∣∣∣∣∣∣
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= −qN−1z

∣∣∣∣∣∣∣∣∣

q−2N+1p2N−1

(
y, qN−1z

)
p2N−1

(
y/q, qN−2z

) · · · p2N−1(y/q, z)
q−2N+3p2N−3

(
y, qN−1z

)
p2N−3

(
y/q, qN−2z

) · · · p2N−3(y/q, z)
...

... · · · ...
q−1p1

(
y, qN−1z

)
p1

(
y/q, qN−2z

) · · · p1(y/q, z)

∣∣∣∣∣∣∣∣∣
.

Continuing this procedure from the second column to the (N − 1)-st column, we have,

φ̃N (y/q, z) = (−qN−1z) · · · (−qz)

×

∣∣∣∣∣∣∣∣∣

q−2N+1p2N−1

(
y, qN−1z

) · · · q−2N+1p2N−1(y, qz) p2N−1(y/q, z)
q−2N+3p2N−3

(
y, qN−1z

) · · · q−2N+3p2N−3(y, qz) p2N−3(y/q, z)
...

... · · · ...
q−1p1

(
y, qN−1z

) · · · q−1p1(y, qz) p1(y/q, z)

∣∣∣∣∣∣∣∣∣
(B.4)

= (−qN−1z) · · · (−qz)q−N2

×

∣∣∣∣∣∣∣∣∣

p2N−1

(
y, qN−1z

) · · · p2N−1(y, qz) q2N−1p2N−1(y/q, z)
p2N−3

(
y, qN−1z

) · · · p2N−3(y, qz) q2N−3p2N−3(y/q, z)
...

... · · · ...
p1

(
y, qN−1z

) · · · p1(y, qz) qp1(y/q, z)

∣∣∣∣∣∣∣∣∣
,

which yields equation (A.4) by noticing equation (B.2). In equation (B.4), multiplying
the N -th column by (1 + qz) and using equation (B.3), we have

φ̃N (y/q, z) =
(−qN−1z

) · · · (−qz)
1

1 + qz

×

∣∣∣∣∣∣∣∣∣

q−2N+1p2N−1

(
y, qN−1z

) · · · q−2N+1p2N−1(y, qz) (1 + qz)p2N−1(y/q, z)
q−2N+3p2N−3

(
y, qN−1z

) · · · q−2N+3p2N−3(y, qz) (1 + qz)p2N−3(y/q, z)
...

... · · · ...
q−1p1

(
y, qN−1z

) · · · q−1p1(y, qz) (1 + qz)p1(y/q, z)

∣∣∣∣∣∣∣∣∣
=

(−qN−1z
) · · · (−qz)

1
1 + qz

×

∣∣∣∣∣∣∣∣∣

· · · q−2N+1p2N−1(y, qz) q−2N+1(qz)p2N−1(y, qz) + p2N−1(y/q, qz)
· · · q−2N+3p2N−3(y, qz) q−2N+3(qz)p2N−3(y, qz) + p2N−3(y/q, qz)
... · · · ...

· · · q−1p1(y, qz) q−1(qz)p1(y, qz) + p1(y/q, qz)

∣∣∣∣∣∣∣∣∣

=
(−qN−1z

) · · · (−qz)
1

1 + qz
×

∣∣∣∣∣∣∣∣∣

· · · q−2N+1p2N−1(y, qz) p2N−1(y/q, qz)
· · · q−2N+3p2N−3(y, qz) p2N−3(y/q, qz)
... · · · ...

· · · q−1p1(y, qz) p1(y/q, qz)

∣∣∣∣∣∣∣∣∣
=

(−qN−1z
) · · · (−qz)

1
1 + qz

q−N2

×

∣∣∣∣∣∣∣∣∣

p2N−1

(
y, qN−1z

) · · · p2N−1(y, qz) q2N−1p2N−1(y/q, qz)
p2N−3

(
y, qN−1z

) · · · p2N−3(y, qz) q2N−3p2N−3(y/q, qz)
...

... · · · ...
p1

(
y, qN−1z

) · · · p1(y, qz) qp1(y/q, qz)

∣∣∣∣∣∣∣∣∣
,
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which yields equation (A.5). This completes the proof of Lemma 2. �
We finally prove Lemma 3. Starting from equation (A.11), we rewrite it in terms of

Casorati determinant in z. Since this is done by using the same technique as that was
used in the proof of Lemma 4, we here give only the result.

Lemma 5.

φN (y, z) = {(q − 1)z}−N(N+1)/2 q−(N−1)N(N+1)/6

×

∣∣∣∣∣∣∣∣∣∣∣

p2N

(
y, qNz

)
p2N

(
y, qN−1z

) · · · p2N (y, qz) p2N (y, z)
p2N−2

(
y, qNz

)
p2N−2

(
y, qN−1z

) · · · p2N−2(y, qz) p2N−2(y, z)
...

... · · · ...
...

p2

(
y, qNz

)
p2

(
y, qN−1z

) · · · p2(y, qz) p2(y, z)
p0

(
y, qNz

)
p0

(
y, qN−1z

) · · · p0(y, qz) p0(y, z)

∣∣∣∣∣∣∣∣∣∣∣
. (B.5)

We put

φN (y, z) =

∣∣∣∣∣∣∣∣∣∣∣

p2N

(
y, qNz

)
p2N

(
y, qN−1z

) · · · p2N (y, qz) p2N (y, z)
p2N−2

(
y, qNz

)
p2N−2

(
y, qN−1z

) · · · p2N−2(y, qz) p2N−2(y, z)
...

... · · · ...
...

p2

(
y, qNz

)
p2

(
y, qN−1z

) · · · p2(y, qz) p2(y, z)
p0

(
y, qNz

)
p0

(
y, qN−1z

) · · · p0(y, qz) p0(y, z)

∣∣∣∣∣∣∣∣∣∣∣
(B.6)

= {(q − 1)z}N(N+1)/2 q(N−1)N(N+1)/6φN (y, z). (B.7)

Proof of Lemma 3. Equation (B.5) is nothing but equation (A.6). In order to prove
equations (A.7) and (A.8), we use the contiguity relation,

q−k 1− qk+1

1− q
pk+1(qy, z) = (1 + z)pk(y, z/q) + qypk(y, z), (B.8)

which follows from equations (3.24)–(3.26). In the right hand side of equation (B.6), we
add the second column multiplied by

(
1 + qNz

)
to the first column multiplied by qy. Using

equation (B.8), we have

φN (y, z) =

∣∣∣∣∣∣∣∣∣∣∣

p2N

(
y, qNz

)
p2N

(
y, qN−1z

) · · · p2N (y, qz) p2N (y, z)
p2N−2

(
y, qNz

)
p2N−2

(
y, qN−1z

) · · · p2N−2(y, qz) p2N−2(y, z)
...

... · · · ...
...

p2

(
y, qNz

)
p2

(
y, qN−1z

) · · · p2(y, qz) p2(y, z)
p0

(
y, qNz

)
p0

(
y, qN−1z

) · · · p0(y, qz) p0(y, z)

∣∣∣∣∣∣∣∣∣∣∣

=
1
qy

∣∣∣∣∣∣∣∣∣

qyp2N

(
y, qNz

)
+

(
1 + qNz

)
p2N

(
y, qN−1z

)
p2N

(
y, qN−1z

) · · ·
qyp2N−2

(
y, qNz

)
+

(
1 + qNz

)
p2N−2

(
y, qN−1z

)
p2N−2

(
y, qN−1z

) · · ·
...

... · · ·
qyp0

(
y, qNz

)
+

(
1 + qNz

)
p0

(
y, qN−1z

)
p0

(
y, qN−1z

) · · ·

∣∣∣∣∣∣∣∣∣

=
1
qy

∣∣∣∣∣∣∣∣∣∣

q−2N 1−q2N+1

1−q p2N+1

(
qy, qNz

)
p2N

(
y, qN−1z

) · · ·
q−2N+2 1−q2N−1

1−q p2N−1

(
qy, qNz

)
p2N−2

(
y, qN−1z

) · · ·
...

... · · ·
q0 1−q1

1−q p1

(
qy, qNz

)
p0

(
y, qN−1z

) · · ·

∣∣∣∣∣∣∣∣∣∣
.
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Continuing this procedure from the second to the N -th columns, we obtain

φN (y, z) =
(

1
qy

)N

×

∣∣∣∣∣∣∣∣∣∣

· · · q−2N 1−q2N+1

1−q p2N+1(qy, qz) p2N (y, z)

· · · q−2N+2 1−q2N−1

1−q p2N−1(qy, qz) p2N−2(y, z)
...

... · · ·
· · · q0 1−q1

1−q p1(qy, qz) p0(y, z)

∣∣∣∣∣∣∣∣∣∣
(B.9)

=
(

1
qy

)N N+1∏
j=1

q−2j(1− q2j−1)
1− q

×

∣∣∣∣∣∣∣∣∣∣

p2N+1

(
qy, qNz

) · · · p2N+1(qy, qz) q2N 1−q
1−q2N+1 p2N (y, z)

p2N−1

(
qy, qNz

) · · · p2N−1(qy, qz) q2N−2 1−q
1−q2N−1 p2N−2(y, z)

...
... · · ·

p1

(
qy, qNz

) · · · p1(qy, qz) q0 1−q
1−q1 p0(y, z)

∣∣∣∣∣∣∣∣∣∣
.

which yields equation (A.7) by noticing equation (B.7). Furthermore, in equation (B.9),
adding the (N − 1)-st column to the N -th column multiplied by −(1 + qz) and using
equation (B.8), we have

φN (y, z) =
(

1
qy

)N −1
1 + qz

×

∣∣∣∣∣∣∣∣∣∣

· · · q−2N 1−q2N+1

1−q p2N+1(qy, qz) qyp2N (y, qz)

· · · q−2N+2 1−q2N−1

1−q p2N−1(qy, qz) qyp2N−2(y, qz)
...

... · · ·
· · · q0 1−q1

1−q p1(qy, qz) qyp0(y, qz)

∣∣∣∣∣∣∣∣∣∣
=

(
1
qy

)N−1 −1
1 + qz

N+1∏
j=1

q−2(j−1)(1− q2j−1)
1− q

×

∣∣∣∣∣∣∣∣∣∣

p2N+1

(
qy, qNz

) · · · p2N+1(qy, qz) q2N 1−q
1−q2N+1 p2N (y, qz)

p2N−1

(
qy, qNz

) · · · p2N−1(qy, qz) q2N−2 1−q
1−q2N−1 p2N−2(y, qz)

...
... · · ·

p1

(
qy, qNz

) · · · p1(qy, qz) q0 1−q
1−q1 p0(y, qz)

∣∣∣∣∣∣∣∣∣∣
,

which gives equation (A.8). This completes the proof of Lemma 3. �
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37–65.

[20] Noumi M and Yamada Y, Symmetries in the Fourth Painlevé Equation and Okamoto Poly-
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