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Abstract

Let Fλ(Sn) be the space of tensor densities on S
n of degree λ. We consider this space

as an induced module of the nonunitary spherical series of the group SO0(n+1, 1) and
classify (so(n+1, 1),SO(n+1))-simple and unitary submodules of Fλ(Sn) as a function
of λ.

1 Introduction and main result

Let Fλ(Sn) be the space of tensor densities of degree λ ∈ C on the sphere S
n, that is, of

smooth sections of the line bundle

∆λ(Sn) = |ΛnT ∗
S

n|⊗λ

on S
n. This space plays an important rôle in geometric quantization and, more recently,

it has also been used in equivariant quantization (see [1]). This space is endowed with
a structure of Diff(Sn)- and Vect(Sn)-module in the following way. As a vector space,
it is isomorphic to the space C∞

C
(Sn) of smooth complex-valued functions; the action of

a vector field

Y =
n∑

i=1

Yi
∂

∂xi

is given by the Lie derivative of degree λ

Lλ
Y (ϕ(x1, . . . , xn)) =

n∑
i=1

(
Yi
∂ϕ

∂xi
+ λ

∂Yi

∂xi
ϕ

)
(x1, . . . , xn) (1.1)

in any coordinate system.
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The Lie algebra so(n+1, 1) ⊂ Vect(Sn) of infinitesimal conformal transformations, that
we call the conformal Lie algebra, is generated by the vector fields

Xi =
∂

∂si
, Xij = si

∂

∂sj
− sj

∂

∂si
,

X0 =
∑

i

si
∂

∂si
, X̄i =

∑
j

(
s2j

∂

∂si
− 2sisj

∂

∂sj

)
, (1.2)

where (s1, . . . , sn) are stereographic coordinates on the sphere S
n.

The space Fλ(Sn) is naturally an so(n + 1, 1)-module; furthermore, the restriction of
the action of the group Diff(Sn), defines the action of the subgroup SO(n + 1) given by
the formula

(k0.f)(k) = f(k−1
0 k), where k0 ∈ K, k ∈ S

n � SO(n+ 1)/SO(n).
Therefore, Fλ(Sn) is also a SO(n+ 1)-module.
Given a Lie group G and a compact subgroup K ⊂ G, let g and k be the corresponding

Lie algebras. One calls (g,K)-module a complex vector space E endowed with actions of g
and K such that

1. (Adk ·X) · e = k ·X · k−1 · e ∀ k ∈ K, X ∈ g, e ∈ E

2. For all e ∈ E, the space K · e is finite-dimensional (i.e., e is a K-finite vector), the
representation of K in F is continuous and one has for X ∈ k :

X · e = d

dt
(exp tX) · e|t=0.

Put G = SO0(n + 1, 1), the connected component of the identity in SO(n + 1, 1),
g = so(n+1, 1) and K = SO(n+1); let H(K) be the space of K-finite vectors in Fλ(Sn).
The main result of this note is a classification of simple and unitary (g,K)-submodules
of H(K) as a function of λ.
Theorem 1. 1. If λ �= l/n for l ∈ Z, or if, for n > 1, λ ∈ {

1
n ,

2
n , . . . ,

n−1
n

}
, then Fλ(Sn)

contains a unique simple (g,K)-module H(K), identified to the space of harmonic
polynomials on S

n. This module is unitary if and only if λ = 1
2 + iα, α ∈ R

∗, or
λ ∈]0, 1[\{

1
2

}
.

2. If λ = −l/n, l ∈ N, H(K) contains a unique simple (g,K)-submodule, which is
finite-dimensional and given by the elements of degree ≤ l. It is unitary if and only
if λ = 0.

3. If n = 1 and λ = l, l ∈ N
∗, H(K) contains two simple (g,K)-submodules, unitary

and infinite-dimensional, and the direct sum of these modules consists of the elements
of H(K) of degree ≥ l.

4. If n > 1 and λ = 1 + l/n, l ∈ N, H(K) contains a simple infinite-dimensional
(g,K)-submodule consisting of the elements with degree ≥ l+ 1. It is unitary if and
only if λ = 1.

Remark 1. We described all the closed G-submodules of Fλ(Sn) (cf. [3], Theorem 8.9),
and, since G is connected, we obtained, in the case (2), every simple finite-dimensional
g-submodules of Fλ(Sn).
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2 Nonunitary spherical series

The main ingredient of the proof of Theorem 1 is the identification of the modules Fλ(Sn)
with induced representations. Denote G = KAN the Iwasawa decomposition of G and ρ
the half-sum of the positive restricted roots of the pair (so(n+ 1, 1), a), A = exp a.
Consider the representation IndG

MAN (0⊗ ν), induced from the minimal parabolic sub-
group MAN of G, with the trivial representation of the subgroup M = SO(n) (the
centralizer of A in K) and a one-dimensional representation µ of A such that, for h ∈ A,
one has µ(h) = exp(ν(log h)), with a fixed ν ∈ a∗. Abusing the notations, we identify an
element ν in a∗ with ν(H), where H is the matricial element

H = En+1,n+2 + En+2,n+1 (with elementary matrices Eij).

Therefore, ρ = n
2 .

The Iwasawa decomposition shows that this induced representation acts on the space
of functions in L2(K/M) = L2(Sn), and the operators of this representation are given, for
g ∈ G, by

IndG
MAN (0⊗ ν)(g)f(k) = exp(−ν(log h))f(kg), with g−1k = kghn ∈ KAN.

Considering every value of ν in C, we obtain the representations of the so-called nonunitary
spherical series, that defines a structure of G-module on the space L2(Sn). We denote by
C∞

ν (S
n) the submodule constituted of C∞ elements.

Our proof is based on the following fact.

Theorem 2. The g-modules Fλ(Sn) and C∞
ν (S

n) are isomorphic if and only if ν = nλ,
and this isomorphism is compatible with the action of K.

Let us give the main idea of the proof of Theorem 2. Denote by d IndG
MAN (0⊗ ν) the

infinitesimal representation associated with IndG
MAN (0 ⊗ ν), LX the Lie derivative along

X ∈ g, and (θ1, . . . , θn) the spherical coordinates on S
n. Straightforward but complicated

computations lead to the following two facts, that use cohomological (elementary) notions.

Lemma 1. For all X ∈ g one has

d IndG
MAN (0⊗ ν)(X) = LX + ν c(X),

where c is the 1-cocycle on so(n + 1, 1) with coefficients in C∞(Rn) given, in spherical
coordinates, by c(X) = ∂Xn

∂θn
.

It is known that the cohomology space H1(so(n + 1, 1); C∞(Rn)) is one-dimensional.
We then have the following

Lemma 2. The cocycle c is cohomological to the cocycle c̃ given in spherical coordinates
by

c̃(X) =
1
n
DivX.

We now use the fact that two representations that are given by LX+c(X) and LX+c̃(X)
are equivalent if the cocycles c and c̃ belong to the same cohomology class. Theorem 2 is
proved.
As a consequence, (g,K)-modules of K-finite vectors in Fλ(Sn) and C∞

ν (S
n) are iso-

morphic.
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3 Classification of (g, K)-modules in Fλ(S
n)

Let us now use the results (and the notations) of [2] (see Appendix B.10). Let us put
k =

[
n+1

2

]
(where [p] is the integral part of p), and denote by Dm1,...,mk the simple K-

module with highest weight mkε1 +mk−1ε2 + · · ·+m1εk, where

εi(λ1H1 + · · ·+ λkHk) = λi,

and the matricial Hr = i(E2r−1,2r − E2r,2r−1) generate a Cartan subalgebra of the Lie
algebra k .
Consider the representation IndG

MAN (0⊗ν+ρ) (which is unitary if and only if ν is pure
imaginary), and describe the (g,K)-module E0,ν of its K-finite vectors : the restriction of
the latter to K is given by the direct sum of simple K-modules

E0,ν |K =
⊕

D0,...,0,m,

∣∣∣∣ m ∈ N for n > 1;
m ∈ Z for n = 1.

We use the isomorphism E0,−ν
∼= E∗

0,ν (K-finite dual).
The module E0,ν is unitary if and only if ν is pure imaginary, or ν ∈ ]−n

2 ,
n
2

[ \ {0}.
In order to study simple (g,K)-submodules of E0,ν , we have to consider the following

two cases.

• If n = 1, then the module E0,ν is simple if and only if ν �∈ 1
2 + Z.

Otherwise, we have:

– If ν < 0, E0,ν contains a unique simple(g,K)-submodule. It is finite-dimensional
and given, as a K-module, by

⊕
|m|≤|ν|− 1

2
Dm. This module is unitary for

ν = −1
2 .

– If ν > 0, E0,ν contains two simple infinite-dimensional (g,K)-submodules, given
as K-modules by

⊕
ν+ 1

2
≤±m Dm. These modules are unitary.

• If n > 1, then the module E0,ν contains a simple submodule if and only if ν =
± (

n
2 ,

n
2 + 1, . . .

)
. In this case, there exists a simple finite-dimensional (g,K)-module

given, as a K-module, by
⊕

m≤|ν|−n
2
D0,...,0,m. This is a (g,K)-submodule of E0,ν if

ν < 0, and a quotient-module if ν > 0. It is unitary for ν = −n
2 .

Consider the space of smooth functions on R
n+1\{0}, homogeneous of degree −λ(n+1).

This space is a Diff(Sn)-module (and also a Vect(Sn)-module with the Lie derivative)
isomorphic to the module Fλ(Sn) (see [5]). Denote by Hn+1,m the K-module constituted
of its elements of the form

Pm(x0, . . . , xn)(
x2

0 + · · ·+ x2
n

)m
2

+λ n+1
2

,

where Pm is a harmonic polynomial homogeneous of degree m. We, finally, check the
following facts:
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• If n = 1, then H2,m ∼= D−m ⊕Dm. Indeed H2,m is the direct sum of SO(2)-modules
Hm and H−m, respectively generated by

(x0 + ix1)m
(
x2

0 + x2
1

)−m
2
−λ

and its conjugate in C, and we have H±m
∼= D±m.

• If n > 1, then Hn+1,m is simple and we have Hn+1,m ∼= D0,...,0,m .

Consequently, the (g,K)-module of K-finite vectors of Fλ(Sn) is given by

H(K) ∼=
⊕
m∈N

Hn+1,m.

Let us apply the above results to the representation IndG
MAN (0 ⊗ ν). Substituting

ν + ρ = nλ to Theorem 2, we obtain the assertions of Theorem 1.

Remark 2. The case n = 1 can be directly deduced from the classification of represen-
tations of SL(2,R): acting the same way as in [4], we observe that the space of K-finite
vectors of Fλ(S1) is the direct sum

⊕
H2l, l ∈ Z, where Hm is the space of the represen-

tation of SO(2) ⊂ SL(2,R) with the character

χm :
[
cos θ sin θ
− sin θ cos θ

]
�→ eimθ.
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