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Abstract

We present a theory of compatible differential constraints of a hydrodynamic hierarchy
of infinite-dimensional systems. It provides a convenient point of view for studying
and formulating integrability properties and it reveals some hidden structures of the
theory of integrable systems. Illustrative examples and new integrable models are
exhibited.

1 Introduction

In this paper we are concerned with the hierarchy of evolution equations

∂G

∂ti
= 〈Ai, G〉, G = G(λ, x, t), t := (t1, t2, . . .), i ≥ 1, (1.1)

where 〈U, V 〉 := UVx − UxV , and the function G is assumed to posses an expansion

G = g0(x, t) +
g1(x, t)

λ
+

g2(x, t)
λ2

+ · · · , λ → ∞, (1.2)

We consider two different forms of (1.1) corresponding to the cases g0 ≡ 1 and g0 	≡ const,
which will be henceforth referred to as the normalized G(n) and the Schwarzian G(s)

hierarchies, respectively. They are determined by two different definitions of the functions
Ai = Ai(λ, x, t); namely,

A
(n)
i = λi + · · ·+ gi−1λ + gi, A

(s)
i = g0λ

i + · · ·+ gi−1λ,

respectively. In both cases we may write

Ai = (λiG)+, i ≥ 1,
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where the projectors P : A → A+ acting on power series A =
∑
n
anλ

n is defined as

A
(n)
+ := P (n)(A) =

∑
n≥0

anλ
n, A

(s)
+ := P (s)(A) =

∑
n≥1

anλ
n.

In terms of the coefficients of the expansion of G, the hierarchy (1.1) becomes a set
infinite-dimensional systems of hydrodynamic type

∂ign =
n∑

k=1

〈gn−k, gi+k〉, n ≥ 0, (normalized case),

∂ign =
n∑

k=0

〈gn−k, gi+k〉, n ≥ 0, (Schwarzian case).

We will show below that the case g0 	≡ const can be considered as the Schwarzian form of
the case g0 ≡ 1 and that a transformation connecting both cases exists.

Although equations similar to (1.1) were considered in the literature [1, 2, 3, 4] (starting
with [1]), the normalized case of the hierarchy (1.1) was recently reconsidered in [5] from
the point view of the reduction theory of integrable systems. It was in this context where
the notion of differential constraint was introduced. One of the main aims of the present
work is to show that this notion is a useful one in the theory of integrable systems.

For several purposes it is convenient to use instead of G the function

H :=
1
G

= h0 +
h1

λ
+

h2

λ2
+ · · · ,

h0 =
1
g0

, h1 = −g1

g2
0

, h2 =
g2
1

g3
0

− g2

g2
0

, . . . . (1.3)

It allows us to write (1.1) in the alternative form

∂H

∂ti
=

∂

∂x
(AiH) , (1.4)

which implies that the coefficients of the expansion of H in powers of λ supply an infinite
set of conservation laws for (1.1).

The function H is particularly useful to deal with the reductions of (1.1) determined
by differential constraints. Let us illustrate this fact by considering the first flow t := t1
of the Schwarzian hierarchy, which according to (1.4) reads

hn,t = ĥn+1,x, ĥn :=
hn

h0
, n ≥ 0. (1.5)

Let us look for a differential constraint of the form

ĥ1 = B(h0, h0,x), (1.6)

allowing to reduce the first equation in (1.5) to

h0,t = DxB(h0, h0,x), (1.7)
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where Dx stands for the total differentiation with respect to x. The differential con-
straint (1.6) should be compatible with the whole hierarchy. In particular, the second
equation in (1.5) implies

Dt(h1) = Dt(h0B(h0, h0,x)) ∈ ImDx. (1.8)

Here Dt is the total differentiation operator with respect to t and ImDx denotes the range
of Dx acting on the set of polynomials in the variables h0, h0,x, h0,xx, . . .. Now one easily
finds that

Dt(h1) ≡ −(h0B11B1)h2
0,xx + · · · ,

where B11 is the second derivative of B with respect to the argument h0,x. Thus (1.8)
yields B11 = 0 and therefore the constraint (1.6) should be of the form

ĥ1 = b(h0) + a(h0)h0,x.

One can directly prove in this way that the only constraint (1.6) compatible with (1.5)) is

(log h0)x = h1. (1.9)

The corresponding reduced evolution equation (1.7) is given by

h0,t +
(

1
h0

)
xx

= 0.

Several interesting generalizations of this type of constraints will be discussed in this
paper. For example it will be proved that the constraints

(log h0)x = hm, m ≥ 1, (1.10)

and

{h0, x} =
[
H2

]
n
, n ≥ 1, (1.11)

are compatible with (1.5). Here

{a, x} :=
3
4

(ax

a

)2 − 1
2
axx

a
.

and
[
H2

]
n

stands for the coefficient at λ−n of the expansion of H2 in powers of λ.
The paper is organized as follows. In Section 2 we deal with the structure of symme-

tries of the hierarchies (1.1) and reformulate some basic results. A particular attention
is devoted to applying the classical Liouville method of solution for solving the polyno-
mial reductions of (1.1). Some apparently new results concerning τ -functions like objects
(Theorem 2) and a map G(s) → G(n) (Theorem 3) are also presented. Section 3 is con-
cerned with the use of the method of differential constraints to characterize nonlinear
integrable models from (1.1). It is shown how the structure of wide classes of these models
as well as simple strategies for finding solutions can be conveniently described by this
method. Some new integrable models, including a 2+1-dimensional one (3.22) are exhibi-
ted.
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2 Symmetries

We first reformulate some already known basic properties about the symmetries of the
hierarchy (1.1). Our starting point is the following theorem [5]

Theorem 1. The evolutionary flows defined by (1.1) form a commuting family.

Proof. By using the Jacobi identity for the wronskian operation 〈U, V 〉 we have

∂2G

∂ti∂tj
− ∂2G

∂tj∂ti
=

〈
∂Aj

∂ti
− ∂Ai

∂tj
+ 〈Aj , Ai〉, G

〉
.

¿From (1.1) and taking into account that Ai = (λiG)+ it follows

∂Aj

∂ti
− ∂Ai

∂tj
=

(〈Ai, λ
jG〉 − 〈Aj , λ

iG〉)
+
. (2.1)

On the other hand

〈Aj , λ
iG〉 = −〈λiG,λjG− (λjG)−〉 = 〈λiG, (λjG)−〉,

where (λjG)− := λjG− (λjG)+. Hence

∂Aj

∂ti
− ∂Ai

∂tj
=

(〈Ai, λ
jG〉 − 〈λiG, (λjG)−〉

)
+

=
(〈Ai, λ

jG〉 − 〈Ai, (λjG)−〉
)
+

= 〈Ai, Aj〉+ = 〈Ai, Aj〉,

which proves the statement. �

The hydrodynamic character of the equations of the hierarchy (1.1) has important
consequences. Thus, it follows that if λ = λ0 is either a zero or a pole of G then

∂λ0

∂ti
= Ai(λ0, x, t)

∂λ0

∂x
.

It means that zeros and poles of G are Riemann invariants of (1.1). This is a useful prop-
erty because an obvious reduction of (1.1) arises when only a finite number of coefficients
in the expansion (1.2) of G are different from zero

G(n) = 1 +
g1

λ
+ · · ·+ gN

λN
, G(s) = g0 +

g1

λ
+ · · ·+ gN−1

λN−1
. (2.2)

In this case it is possible to perform the integration of (1.1) in terms of Riemann invariants.
Let us illustrate this feature for the normalized case. We can rewrite G in the form

G =
1
λN

N∏
i=1

(λ + γi(x, t)), (2.3)

where γi(x, t) are the zeros of G. Thus, under the change of dependent variables

�g := (g1, . . . , gN ) �→ �γ := (γ1, . . . , γN ),
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the system (1.1) reduces to

∂nγi = Ωni(�γ)∂xγi, n ≥ 1. (2.4)

Here Ωni := An|λ=−γi are given by

Ωni =

 (−1)n
∑
jl �=i

γj1γj2 · · · γjn if n = 1, 2, . . . , N − 1,

0 if n ≥ N.
(2.5)

The equations (2.4)–(2.5) form a set of N − 1 weakly nonlinear hydrodynamic systems
of Dubrovin type [2] which can be integrated by means of a version of the classical Liouville
method [6] proposed by Tsarev [7] (see also [8]). It basically consists in finding a vector
field Dx acting on the new dependent variables �γ

Dxγi = Xi(�γ), i = 1, . . . , N, (2.6)

in such a way that it commutes with the fields ∂j , j = 1, . . . , N − 1. This is verified
provided

∂ lnXi

∂γj
=

1
γi − γj

, i 	= j. (2.7)

By applying Tsarev’s method (see [7, 8]) one finds

Lemma 1. A general solution of (2.7) is

Dxγi =
ai(γi)∏

j �=i

(γi − γj)
, i = 1, . . . , N, (2.8)

where ai(ξ) are N arbitrary functions.

As a consequence we can reformulate (2.4) as a set of N dynamical systems for γi

∂nγi = ΩniXi, n = 1, . . . , N − 1,
∂xγi = Xi. (2.9)

Equivalently, we have

d γi

ai(γi)
=

2∏
j �=i

(γi − γj)

(
dx+

N−1∑
n=1

Ωni d tn

)
, i = 1, . . . , N. (2.10)

One can explicitly invert (2.10) (see [8]) and find

(−1)n d tn =
N∑

i=1

γN−n−1
i

ai(γi)
d γi, n = 0, . . . , N − 1, (2.11)

where we are denoting t0 := x. Therefore, we conclude that the general solution of (2.4)
is determined by the following system of N implicit relations

(−1)ntn =
N∑

i=1

∫ γi γN−n−1
i

ai(γi)
d γi, n = 0, . . . , N − 1. (2.12)

The theorems which follow state some apparently new results on the structure of the
hierarchy (1.1)
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Theorem 2. The differential forms

ω1 = g1 dx+ g2 d t1 + · · ·+ gn d tn+1 + · · · , (normalized case),

ω2 =
1
g0

(dx− g1 d t1 + · · · − gn d tn + · · · ) , (Schwarzian case),

are closed.

Proof. Let us consider the normalized case. Notice that

ω1 =
∑
i≥0

Res(λiG) d ti,

where Res(A(λ)) stands for the coefficient of λ−1 of Laurent series A(λ) in λ. Moreover,
from (1.1)

∂

∂tj
Res(λiG) = Res

(
λi∂G

∂tj

)
= Res(〈Aj , λiG〉). (2.13)

On the other hand

Res(〈Aj , λiG〉) = Res(〈λjG− (λG)−, λiG〉) = −Res(〈(λjG)−, (λiG)+〉)
= Res(〈Ai, (λjG)−〉) = Res(〈Ai, λjG〉),

so that (2.13) implies

∂

∂tj
Res(λiG) =

∂

∂ti
Res(λjG),

which proves that ω1 is closed.
The proof for the Schwarzian case can be done similarly by writing

ω2 =
1
g0

−
∑
i≥1

Res
(
λi−1 G

g0

)
d ti,

and by taking into account that

∂

∂ti

1
g0

= − ∂

∂x

gi

g0
. (2.14)

�

As a consequence of this theorem there exist two functions qi = qi(x, t) verifying

ωi = d qi, i = 1, 2, (2.15)

so that we can rewrite the hierarchy (1.1) as a system of partial differential equations
for qi.
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Theorem 3. Let G(s) = G(s)(λ, x, t) be a solution of the Schwarzian hierarchy (1.1). If
we define x̂ = q2(x, t), where q2 satisfies (2.15), then

G(n)(λ, x̂, t) :=
G(s)(λ, x, t)
g0(x, t)

, (2.16)

solves the normalized hierarchy (1.1).

Proof. Observe that

∂x̂

∂x
=

1
g0

,
∂x̂

∂ti
=

1
gi
, i ≥ 1.

Hence

∂x

∂x̂
= g0,

∂x

∂ti
= gi, i ≥ 1.

Therefore, by taking (2.14) into account, we have

∂G(n)

∂ti
=

(
∂

∂ti
+ gi

∂

∂x

)
G(s)

g0
=

1
g0

〈A(n)
i + gi, G

(n)〉 = 〈A(s)
i , G(s)〉x̂,

where

A
(n)
i = λi + · · ·+ ĝi−1λ + ĝi, ĝi :=

gi

g0
,

and 〈U, V 〉x̂ := U∂x̂V − V ∂x̂U . �

Remark. This theorem shows that a correspondence G(s) → G(n) between the Schwarzian
and normalized hierarchies exists. Reciprocally, a transformation G(n) → G(s) can also be
defined provided that the solution G(n) = G(n)(λ, x, t) does not vanish at λ = 0. To prove
this statement let us define

u :=
1

G(n)|λ=0
,

and the differential form

ω := u

dx+
∑
i≥1

gi d ti

 ,

where gn are the coefficients of the expansion of G(n) in powers of λ. From (1.1) it follows
at once that

∂iu = (ugi)x.

Moreover, from the identities

∂jAi − ∂iAj = 〈Aj , Ai〉,
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and taking into account that gi = Ai|λ=0, we have

∂jgi − ∂igj = 〈gj , gi〉,
and therefore

∂j(ugi) = ∂i(ugj),

which proves that ω is a closed form. It is now straightforward to demonstrate that the
function

G(s)(λ, x̂, t) := u(x, t)G(n)(λ, x, t),

where

x̂ := q(x, t), ω = d q,

verifies the Schwarzian hierarchy (1.1).

3 Reductions and differential constraints

In [5] wide classes of reductions of the normalized hierarchy (1.1) were introduced by using
the notion of compatible differential constraints. They can be easily generalized to the
Schwarzian hierarchy as well. We will consider here reductions defined by second-order
differential constraints

2GxxG−G2
x + 4a(λ) − 4U(λ, x, t)G2 = 0, (3.1)

where a(λ) is an arbitrary function and

U(λ, x, t) :=
(
a(λ)
G2

)
+

. (3.2)

Requiring compatibility between (1.1) and (3.1) yields

∂nU = −1
2
An,xxx + 2UAn,x + UxAn, n ≥ 1. (3.3)

We notice that in terms of the generating function H for the conservation laws, equa-
tions (3.1) and (3.2) can be written as

{H,x}+ a(λ)H2 = U(λ, x, t), U =
(
a(λ)H2

)
+
, (3.4)

where we are using the Schwarzian derivation operation

{H,x} :=
3
4
H2

x

H2
− 1

2
Hxx

H
.

The equations (3.1) determine integrable hierarchies associated with Schrödinger spectral
problems with energy-dependent potentials. Thus, for a(λ) = λn one finds the generalized
KdV hierarchies for energy-dependent potentials of the form

U(λ, x, t) := λn +
n−1∑
i=0

λiui(x, t), (normalized case), (3.5)
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and

U(λ, x, t) :=
n∑

i=1

λiui(x, t), (Schwarzian case). (3.6)

For the normalized case G = G(n) the simplest choices n = 1 and n = 2 lead to the KdV
and the Zakharov–Shabat hierarchies, respectively. We observe that for the Schwarzian
case the choice a(λ) = λn in (3.4) leads to the constraint (1.11).

Theorem 4. The differential constraint (3.4) is invariant under the transformation
H(s) → H(n) determined by equation (2.16). That is to say, if H(s) satisfies{

H(s), x
}

+ a(λ)H(s)2 = U (s)(λ, x, t),

then {
H(n), x

}
+ a(λ)H(n)2 = U (n)(λ, x, t).

The corresponding transformation law for the potential function is

U (n) = g2
0U

(s) + {g0(x̂), x̂}. (3.7)

Proof. If we define H(n) := H(s)/h0, then it follows at once that{
H(s), x

}
= h2

0

({
H(n), x̂

}
+

1
4
h2

0,x̂

h2
0

− 1
2
h0,x̂x̂

h0

)
.

On the other hand{
1
h0

, x̂

}
=

1
2
h0,x̂x̂

h0
− 1

4
h2

0,x̂

h2
0

.

Thus, it is straightforward to get{
H(n), x̂

}
+ a(λ)H(n)2 = U (n), U (n) :=

1
h2

0

U (s) +
{

1
h0

, x̂

}
. (3.8)

�

A complete and convenient description of the general class of the energy-dependent
hierarchies can be formulated by taking advantage of the identities (3.4). The following
examples illustrate the fact that, in addition to the standard hierarchies of Zakharov–
Shabat and KdV types, many other integrable models may be analyzed within the theory
of the second order differential constraints of the Schwarzian hierarchy (1.1).

Example 1. For a(λ) = λ and G = G(s), the constraint (3.4) reads

{H,x}+ λH2 = λu1,

and by identifying the coefficient of 1/λ we get

{h0, x}+ 2h0h1 = 0.
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Hence, by taking into account that in terms of the function q := q2(x, t) of (2.15)

h0 =
1
g0

= qx, h1 = −g1

g2
0

= qxqt, (t := t1), (3.9)

we deduce at once the Schwarzian form of the KdV equation

2qtqx = {qx, x} ⇔ −8qt + 2
qxxx

q3
x

− 3
q2
xx

q4
x

= 0, (3.10)

which, written in terms of g0 = 1/h0, reduces to the Harry–Dym equation

g0,t =
1
4
g3
0g0,xxx. (3.11)

Example 2. For a(λ) = λ2 and G = G(s), the identity (3.4) reads

{H,x}+ λ2H2 = λ2u2 + λu1,

and by identifying the constant term in the expansion in powers of λ we get

{h0, x}+ h2
1 + 2h0h2 = 0.

Now, from (1.4) we have

h0,t =
(
h1

h0

)
, h1,t =

(
h2

h0

)
, (t := t1).

Hence, by taking into account (3.9) we find

(qxqt)t =
(

1
4
qxxx

q3
x

− 3
8
q2
xx

q4
x

− 1
2
q2
t

)
x

. (3.12)

This nonlinear equation admits a Lagrangian given by

L =
∫∫ (

q2
t qx +

1
4
q2
xx

q3
x

)
dxd t, (3.13)

or, equivalently, under the point transformation q(u(y, t), t) = y

L =
∫∫

u2
t + u2

yy

u2
y

d y d t. (3.14)

If we denote now y → x, u → q, the following equivalent Lagrangian formulation arises

L =
∫∫ (

q2
t + q2

xx

q2
x

)
dxd t =

∫∫ (
(qt + qxx)2

q2
x

− 2
qtqxx

q2
x

)
dxd t

=
∫∫

(qt + qxx)2

q2
x

dxd t.

Thus, the model admits a Hamiltonian density

H = qtLqt − L = pxqx +
1
4
p2q2

x, p := Lqt , L :=
(qt + qxx)2

q2
x

,
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which leads to the Hamiltonian equations

qt + qxx + 2pq2
x = 0, −pt + pxx = (2p2qx)x.

It should be noticed that the last system is one of “canonical” forms of the isotropic
Landau–Lifshitz model (see [9]).

In [5] first-order differential constraints defining reductions of (1.1) were also intro-
duced. They adopt the form

Gx − a(λ) − U(λ, x, t)G = 0, (3.15)

where a(λ) is an arbitrary function and

U(λ, x, t) := −
(
a(λ)
G

)
+

. (3.16)

Requiring compatibility between (1.1) and (3.15) gives

∂nU = −An,xx + (UAn)x, n ≥ 1, (3.17)

or, equivalently,

∂nU = −∂x(U(λnG)−)+, n ≥ 1, . (3.18)

In terms of the function H equations (3.15) and (3.16) read

Hx + a(λ)H2 + U(λ, x, t)H = 0, U = −
(
a(λ)H

)
+
. (3.19)

We notice that for the Schwarzian case if we set a(λ) = −λm in (3.15) the constraint (1.10)
follows.

First-order differential constraints determine in turn further reductions of the second-
order differential constraints. Indeed, it follows easily that

Theorem 5. Given a solution G of (3.15) then it satisfies

2GxxG−G2
x + a(λ)2 − 4Û(λ, x, t)G2 = 0,

where U → Û is implemented by the Miura transformation

Û :=
1
2
Ux +

1
4
U2.

Among the reductions defined by first-order differential constraints one finds the Bur-
gers hierarchy as well as a class of hierarchies of energy-dependent type.

Example 3. If we impose on G = G(n) the constraint

Gx = (λ + u)G− λ, u = h1 = −g1,

we get the Burgers hierarchy

∂nu = ∂x ((∂x + u)nu) .

In particular the flow corresponding to t := t1 is the Burgers equation

ut = uxx + 2uux.
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Example 4. For a constraint on G = G(n) of the form

Gx = (λ2 + λu1 + u0)G− λ2, u1 = h1 = −g1, u0 = h2 = g2
1 − g2, (3.20)

we get the following hierarchy for the energy-dependent potential U := λ2 + λu1 + u0

∂n

(
u1

u0

)
=

( −∂x 0
0 −∂x(∂x − u0)

)
Rn+1

(
1
0

)
, (3.21)

where

R :=
( −u1 ∂x + u0

1 0

)
.

The flow corresponding to t := t1 reads

u0,t = u1,xx − (u0u1)x, u1,t = − (
u2

1 + u0

)
x
, (3.22)

which in terms of the function q := q1(x, t) of (2.15) reduces to

qtt − qxxx − 3qxqxt − qtqxx + (qx)3x = 0.

It is possible to characterize multidimensional integrable models by imposing compat-
ible differential constraints to (1.1). To illustrate this feature let us consider the con-
straint (3.20) for G = G(n) and denote y := t1, t := t2. Thus we have the system of
equations

Gx =
(
λ2 − λg1 + g2

1 − g2

)
G− λ2, (3.23a)

Gy = 〈λ + g1, G〉, (3.23b)

Gt = 〈λ2 + λg1 + g2, G〉. (3.23c)

Let us introduce the function

F := uG = f0 +
f1

λ
+

f2

λ2
+ · · · , u :=

1
G|λ=0

.

From (3.23) we get

ux =
(
g2 − g2

1

)
u,

uy =
(
g1,x + g1g2 − g3

1

)
u,

ut =
(
g2,x + g2

2 − g2g
2
1

)
u,

so that the equations (3.23) written in terms of F read

Fx =
(
λ2 − λg1

)
F − λ2f0, (3.24a)

Fy =
(
λ3 − λg2

)
F − λ3f0 − λf1, (3.24b)

Ft =
(
λ4 − λg3

)
F − λ4f0 − λ3f1 − λ2f2. (3.24c)

Now it is easy to deduce from (3.24) that

Ft = Fxx + 2g1Fy − g2
1Fx, (3.25)
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and, as a consequence, one finds that v := g1 and w = lnu satisfy the nonlinear system of
equations

vt = vxx + 2vvy − v2vx + 2vxwx,

wt = wxx + 2vwy − v2wx + w2
x. (3.26)

We observe that equations (3.24) mean that equation (3.25) and, consequently, equa-
tion (3.26) admit separation of variables. If we expand F in powers of λ then equa-
tions (3.24) become

fn,x = fn+2 − g1fn+1, f−1 = 0, f0 = u, (3.27a)
fn,y = fn+3 − g2fn+1, f2 = ug2, (3.27b)
fn,t = fn+4 − g3fn+1, f3 = ug3. (3.27c)

By using (3.27a) all the coefficients fn can be expressed as differential polynomials in u
and v = g1:

f0 = u, f1 = uv, f2 = ux + uv, f3 = (uv)x + vux + uv3, . . .

Furthermore, the system (3.27) implies that polynomial reductions of the form

fn = 0, ∀ n ≥ N,

are Liouville integrable. Indeed, by noticing that fN−1 = const, we require N − 1 com-
muting vector fields to integrate such a reduction. For example, for N = 4 the dynamical
variables are f0, f1, f2 and (3.27) can be written as

d f0 =
(
f2 − f2

1

f0

)
dx+

(
α− f1f2

f0

)
d y − α

f1

f0
d t,

d f1 =
(
α− f1f2

f0

)
dx− f2

2

f0
d y − α

f2

f0
d t,

d f2 = −α
f1

f0
dx− α

f2

f0
d y − α2

f0
d t,

where α3 := f3 = const. It is now straightforward to eliminate dx, d y, d t and find

dx = d
(
f1

α
− f2

2α2

)
,

d y = d
(
f0

α
− f1f2

α2
+

f3
2

3α3

)
,

d t = d
(
−f0f2

α2
− f2

1

2α2
+

f1f
2
2

α3
− f4

2

4α4

)
,

In this way the solution is determined by the following system

f0 = αy + xf2 − f3
2

2α
, f1 = αx+

f2
2

2α
,

−7
8
f4
2 +

1
2
α2xf2

2 + α3f2 + α4

(
1
2
x2 + t

)
= 0.

This example shows the complicated algebraic singularities exhibited by the solutions
of (3.26).
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