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Abstract In this paper, we study the efficiency of compressed
sensing by using Orthogonal Matching Pursuit (OMP). We show
that if a Matrix Φ has coherence less than 1

20K0.8 and satisfies the
Restricted Isometry Property (RIP) of order [CK1.2] with constant
δ = cK−0.2, then a K-sparse signal x can be recovered from y = Φx

via Orthogonal Matching Pursuit in at most optimal approximation on
the first [CK1.2] iterations.
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1. Introduction.

Compressed Sensing is a new paradigm in signal and image
processing. It seeks to faithfully capture a signal or image
with the fewest number of measurements, cf. [1-9]. Rather
than model a signal as a bandlimited function or an image as
a pixel array, it models both of these as a sparse vector in some
representation system. This model fits well real world signals
and images. For example, images are well approximated by a
sparse wavelet decomposition. One replaces the bandlimited
model of signals by the assumption that the signal is sparse
or compressible with respect to some basis or dictionary of
waveform and enlarges the concept of sample to include the
applications of any linear functional. Given this model, how
should we design a sensor to capture the signal with the
fewest number of measurements? we will focus on the discrete
sensing problem where we are given a vector in RN with N
large and we wish to capture it through n measurements given
by inner products with fixed vectors. Such a measurement
system can be represented by an n×N matrix A. The vector
y = Ax is the vector of n measurements we make of x. The
information that y holds about x is extracted through a decoder
∆ . So ∆(x) should be designed to be a faithful approximation
to x. The fact that this may be possible is embedded in some
old mathematical results in functional analysis, geometry and
approximation, cf. [10-14]. We will discuss what are the best
matrices to use in sensing and how to extract the information
contained in the sensed vector y. We shall focus on the relation
between the number of samples we take of a signal and how
well we can approximate the signal.

In this paper, we study the efficiency of compressed sensing

via Orthogonal Matching Pursuit (OMP). Let us begin with
the demonstration of the use of greedy algorithms in the
compressed sensing problem. The emerging theory of com-
pressed sensing (CS) has provided a new framework for signal
acquisition [1], [3], [8]. Now we recall some basic concepts
of CS. Suppose that 1 ≤ K ≤ n ≤ N and 0 < δ < 1. A
signal x = (xj)

N
j=1 ∈ RN is said to be K-sparse if x has at

most K nonzero coordinates. An n × N matrix Φ is said to
satisfies Restricted Isometry Property (RIP) ([4]) of order K
with isometry constant δ if, for all K-sparse vectors x, we
have

(1− δ)∥x∥2 ≤ ∥Φx∥ ≤ (1 + δ)∥x∥2.

Suppose that ϕ1, ϕ2, ..., ϕN are the columns of a matrix Φ, we
assume that ∥ϕi∥ = 1, 1 ≤ i ≤ N. The coherence of Φ is
defined as

µ(Φ) := sup
ϕi,ϕj∈Φ,i̸=j

|⟨ϕi, ϕj⟩|.

Let Φ be a M ×N matrix (M < N ). The basic problem in
CS is to construct a stable and fast algorithm for recovery a
signal x ∈ Rd (K-sparse) from measurements y = Φx ∈ RM

and to determine (M,N,K) for which such algorithms exist.

Candes and Tao [4] proved that Basic Pursuit (BP)

x̂(y) = argmin{|z|1 : Φz = y}

can provide the exact recovery of arbitrary K-sparse x ∈ RN

by M = O(K log(N/K)) measurements.

In this article we study signal recovery via Orthogonal
Matching Pursuit (OMP). Although theoretical results for
OMP are essentially worse than for BP, its computational
simplicity allows OMP to achieve very good result in practise
[19]. We give the definition of the Orthogonal Matching
Pursuit in terms of the theory of transmission of signals.
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Algorithm: Orthogonal Matching Pursuit

Input:Φ, y.
Initiation: r0 := y, x0 := 0, Λ0 := ∅, l = 0.

Iteration: Define Λl+1 := Λl ∪ argmaxi |⟨rl, ϕi⟩|,
xl+1 := argminz: supp(z)∈Λl+1 ∥y − Φz∥
rl+1 := y − Φxl+1.

If rl+1 = 0, stop. Otherwise, we set l := l + 1 and begin a
new iteration.
Output: If the algorithm stops at the l-th iteration, output
is x̂ = xl.

Now let us recall some results on recovery of sparse signals
by the OMP, it is well known that if

K <
1

2
(µ(Φ)−1 + 1) (1)

then OMP will recover arbitrary K-sparse signal x from
y = Φx in exactly K iterations. Temlyakov and Zheltov [18]
showed that the strict inequality < in (1) cannot be replaced
by the wide inequality ≤. The stability of recovery via OMP
in the term of coherence of has been studied in [11], [19],
[9], [10], [18], [15]. Recently M. Davenport and M. wakin [6],
and E. Liu and V.N. Temlyakov [14] showed that if Φ satisfies
RIP of order K + 1 with isometry constant

δ =
1

3K1/2
(see [6]), δ =

1

(1 + 21/2)K1/2
(see [14]),

then OMP recovers arbitrary K-sparse signal x ∈ RN from
y = Φx in exactly K iterations.

To compare these results we recall estimates on coherence
and RIP for normalized random Bernoulli matrices Φ (each
entry is M−1/2 with probability 1/2). For rather big cµ we
have with high probability that

µ(Φ) ≤ cµM
−1/2 log1/2 N. (2)

R. Baraniuk, M. Davenport R. Devore and M. Wakin [2]
(see also earlier B.S. Kashins work [13]) showed that random
Bernoulli matrix Φ with high probability satisfy RIP of order
K with isometry constant δ > 0 with

K ≍ δ2M

log(N/M)
.

Thus both results require M = O(K2) (M . K2 logN)
measurements for recovery of K-sparse signal. The aim of
this article to show that OMP can recover sparse signals
by essentially less number of measurements. This result is
a improvement of recent results of Eugene Livshitz in [16].

Theorem 1. There exist absolute constants C = 1.6 ×
104 > 0 and c = 10−5 > 0
such that if Φ satisfies the RIP of order [CK1.2] with
isometry constant δ = cK−0.2 and has coherence µ(Φ) ≤
1/(20K0.8), then for any K −
sparse x ∈ RN , OMP will recover x exactly from y =
Φxin at most[CK1.2] iterations.

Theorem 1 together with (1) and (2), imply the estimate:
given a fixed random M×N Bernoulli matrix Φ, the recovery
by OMP will be exact (with high probability) for all K-sparse
x ∈ RN where

K . (
M

logN
)5/8;

in other words, to recovery a K-sparse signals by the OMP it
will suffice to perform M measurements, where

M . K1.6 logN.

2. Auxiliary lemmas.

We use several standard lemmas to prove Theorem 1. First
we use the following two results on the convergence rate of
the OMP.

Theorem A. ([7]) Let y = Φx. Then, for any l > 1,
we have

∥rl∥ ≤ ∥x∥1l−1/2.

Theorem B. ([17])For any l, 1 ≤ l ≤ 1
20µ(Φ) , ∀ε >

0, we have

∥r2l∥ ≤ 2.47(1 + ε)σl(y,Φ)

For l ≥ 0, we set
zl := x− xl.

Then, by the definition of the Orthogonal Matching Pursuit,

rl = y − Φxl = Φx− Φxl = Φzl, l > 0. (3)

Suppose that

x = (x1, . . . , xN ), zl = (zl1, . . . , z
l
N ), l ≥ 0.

We set
V0 = suppx, ♯V0 ≤ K. (4)

By x|V , V ⊂ V0, we define (x̃1, . . . , x̃N ) of RN with x̃i =
xi, i ∈ V, and x̃i = 0, i /∈ V. For any V ⊂ V0, we define

R(V ) =
∑
i∈V

x2
i .

Lemma 1. Assume that l +K ≤ CK1.2. Then we have∑
i∈Λl

(zli)
2 ≤ 2δ

1− δ
R(V0\Λl), (5)

R(V0\Λl) ≤ 1

1− δ
∥rl∥2. (6)

Proof: We clearly have |zl|0 ≤ |x|0 + |xl|0 ≤ K + l ≤
CK1.2, so from the RIP and (3), we get

(1− δ)
N∑
i=1

(zli)
2 ≤ ∥Φzl∥2 = ∥rl∥2 ≤ (1 + δ)

N∑
i=1

(zli)
2. (7)
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On the other hand, using the definition of R(·) and the RIP
for x|V0\Λl ,

∥x|V0\Λl∥2 = R(V0\Λl)

(1− δ)R(V0\Λl) ≤ ∥Φ(x|V0\Λl)∥2 ≤ (1 + δ)R(V0\Λl). (8)

From the definition of the Orthogonal Matching Pursuit, we
have

∥Φzl∥2 = ∥rl∥2 ≤ ∥Φ(x|V0\Λl)∥2.

Therefore using (7) and (8) we have

(1−δ)
N∑
i=1

(zli)
2 ≤ ∥rl∥2 ≤ ∥Φ(x|V0\Λl)∥2 ≤ (1+δ)

N∑
i=1

(zli)
2.

(1− δ)
( ∑
i∈Λl

(zli)
2 +

∑
i∈V0\Λl

(zli)
2
)
≤ (1 + δ)R(V0\Λl).

∑
i∈Λl

(zli)
2 +R(V0\Λl) ≤ 1 + δ

1− δ
R(V0\Λl).

∑
i∈Λl

(zli)
2 ≤

(1 + δ

1− δ
− 1

)
R(x|V0\Λl) =

2δ

1− δ
R(V0\Λl).

This completes the proof of (5). From (7) it follows that

R(V0\Λl) =
∑

i∈V0\Λl

(zli)
2 ≤

N∑
i=1

(zli)
2 ≤ 1

1− δ
∥rl∥2.

Given an increasing sequence 0 = l0 < l1 < · · · < ls, s ≥ 1,
we denote

Vk := V0\Λlk , Rk := R(Vk), 0 ≤ k ≤ s. (9)

Lemma 2. Suppose that lk + K ≤ CK1.2, 1 ≤ k ≤
s. Then for arbitrary p ∈ N, we have

∥rlk+p∥2 ≤ Rk

p

( 4δ

1− δ
CK1.2 + 2K

)
.

Proof: Since rlk = Φzlk , it follows by Theorem A that

∥rlk+p∥2 ≤ ∥zlk∥21
p

. (10)

So, in order to prove Lemma 2 it suffices to estimate

∥zlk∥2 =
( N∑
i=1

|zlki |
)2

=
( ∑
i∈V0∪Λlk

|zlki |
)2

≤ 2
(( ∑

i∈V0\Λlk

|zlki |
)2

+
( ∑
i∈Λlk

|zlki |
)2)

.

Applying (9) and (4), we obtain( ∑
i∈V0∪Λlk

|zlki |
)2

=
( ∑
i∈V0∪Λlk

|xl
i|
)2

=
( ∑
i∈Vk

|xl
i|
)2

≤ ♯Vk(
∑
i∈Vk

|xl
i|)2 ≤ ♯V0Rk

≤ RkK. (11)

Using (5) from Lemma 1 we get( ∑
i∈Λlk

|zlki |
)2) ≤ ♯Λlk

∑
i∈Λlk

(zlki )2 = lk
∑
i∈Λlk

(zlki )2

≤ CK1.2
( 2δ

1− δ

)
R(V0\Λlk) = CK1.2

( 2δ

1− δ

)
Rk.

Combining with (11) we obtain the desirable inequality

∥zlk∥2 ≤ Rk

( 4δ

1− δ
CK1.2 + 2K

)
.

This and inequality (10) concludes the proof of Lemma 2.

Lemma 3. Let 1 ≤ p ≤ K0.8 and lk + 2p ≤ CK1.2, 1 ≤
k ≤ s. Then for an
arbitrary W ⊂ Vk such that ♯W = p we have

R(Vk\Λlk+2p) ≤ 6.16(R(Vk\W ) +
2δ

1− δ
Rk).

Proof: According to RIP, (3), (5) and (9), it is found that(
σp(r

lk)
)2 ≤ ∥rlk − Φ(x|W )∥2 = ∥Φ(zlk)− Φ(zlk |W )∥2

= ∥Φ(zlk − zlk |W )∥2 ≤ (1 + δ)
∑

1≤i≤N, i/∈W

(zlk)2

≤ (1 + δ)
( ∑
i∈Vk\W

(zlk)2 +
∑

1≤i≤N, i/∈Vk

(zlk)2
)

≤ (1 + δ)
( ∑
i∈Vk\W

(xi)
2 +

∑
i∈Λlk

(zlk)2
)

≤ (1 + δ)
(
R(Vk\W ) +

2δ

1− δ
R(V0\Λlk)

)
≤ (1 + δ)

(
R(Vk\W ) +

2δ

1− δ
Rk

)
.

Since we have

p ≤ K0.8 ≤ 1/(20µ(Φ)),

we can apply Theorem B and get

∥rlk+2p∥ ≤ 2.47(1 + ε)σp(r
lk), ∀ε > 0.

Using (6) from lemma 1 we obtain

R(Vk\Λlk+2p) = R(V0\Λlk+2p) ≤ 1

1− δ
∥rlk+2p∥2

≤ (2.47(1 + ε))2(σp(r
lk))2

≤ 1 + δ

1− δ
(2.47(1 + ε))2

(
R(Vk\W ) +

2δ

1− δ
Rk

)
≤ 6.16

(
R(Vk\W ) +

2δ

1− δ
Rk

)
.
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