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Abstract - The longitudinal dynamics of hypersonic flight 

vehicles present an unstable phugoid mode and a new height mode.  

Hypersonic flight will be subject to attitude and height divergence 

that would require stabilizing feedback control. A method of 

design velocity and altitude tracking controller for hypersonic 

flight vehicles is outlined in this paper. The nonlinear longitudinal 

model of hypersonic flight vehicles is trimmed and linearized. 

With the aid of a full-state observer, the controller is designed 

follow the LQR method based on the linearized model. The 

simulation results show that the designed controller can be used for 

velocity and height tracking control. 

Index Terms - hypersonic flight vehicle; tracking control; 

linear quadratic regulator (LQR) 

1.  INTRODUCTION 

Hypersonic flight vehicles are defined as the vehicles 

whose normal flight speed excess 5 Mach. The renewed 

interest of developing hypersonic flight vehicles is based 

upon the advantages it offers, such as a possible solution to 

provide routing and affordable space access and high speed 

civil transportations [1]. However, there are some key 

technological obstacles to the feasibility of hypersonic flight, 

one of which is controller design [2]. The aerodynamic 

effects of hypersonic speeds, the integration of the airframe 

and the propulsion system, the extreme range of operating 

conditions and the rapid change of mass distribution, cause 

the flight dynamics of hypersonic flight vehicles completely 

differ from that of conventional aircrafts. Thus, it requires 

more careful consideration to design reliable and effective 

hypersonic flight vehicle controllers. 

Because of the extreme complexity of the dynamics, 

most of the work on designing the controller for hypersonic 

vehicles only involves the longitudinal dynamics. While 

many work devoted to develop nonlinear controller design 

[3], this paper devoted to develop an LQR controller which 

is much easier to implement and more mature in reality. The 

nonlinear dynamics of hypersonic flight vehicle is linearized 

at a trim point, and then a controller is designed for the 

region near this trim point. The main objective is to 

determine the feasibility of linear control methods for the 

nonlinear dynamics of hypersonic flight vehicle via designs 

on linearized models. This method can be extended by gain 

scheduling at several trim points.  

This paper is organized as follows. Section II presents the 

longitudinal dynamics model of a hypersonic flight vehicle. 

An Analysis of the flight dynamic characteristics of this 

model is presented in section III. Section IV gives the 

tracking controller design method for hypersonic flight 

vehicles and the simulation results of the controller a shown 

in Section V. Finally, the conclusion is presented in Section 

VI. 

2. MODEL DESCRIPTION 

The fifth-order longitudinal equations of motion for a 

hypersonic vehicle, which include both the centripetal 

acceleration that results from a curved flight path and in 

inverse square-law gravitational model, are shown as follows:   
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where V is the flight speed,  is the angle of attack, m  is 

the mass,   is the flight path angle, h  is the height, q  is 

the pitch rate, yI  is the inertial moment about y axis. The 

values of the lift L , drag D , thrust T , and pitching 

moment yM  are given, respectively, by 
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where S  is reference area, c is mean aerodynamic chord 

length. The lift coefficient  LC , drag coefficient DC , thrust 

coefficient TC  and pitch moment coefficient MC  are 

functions of  height h , velocity V , angle of attack  , pitch 
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rate q , elevator deflection angle e  and throttle setting t , 

and their explicit expressions can be found in [5]. The air 

density  , speed of sound a , and the radius from the Earth 

center r are modeled as functions of height h  as 

/7315.21.2266 he 
,   (10) 

8 2 42.949475 910 10.16 303.5808a h h     ,     (11) 

6356766r h .    (12) 

 

  
 

Fig. 1   Simulink model of longitudinal equations of motion for hypersonic vehicle: (a) top level of the model, (b)second level of the model. 
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Fig. 2 Matrices of the plant state-space model. 

 

3. FLIGHT DYNAMIC CHARACTERISTICS 

Fig. 1 shows a Simulink model of the longitudinal 

equations of motion for the hypersonic vehicle. This 

Simulink model can be used to get the trim point by invoking 

the Matlab function “trim”. The vehicle is trimmed at 

4590 /s.3 mV  , 8 m3352h  , 0.0317 rad  ， 

0.1 rad77t  , and 0.0070 rade  . Then, a numerical 

state-space model is obtained by invoking the Matlab 

function “linmod” with the Simulink model and trim point as 

input parameters. The state-space model can be described by 
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 and the numerical values of system matrix 
pA , input matrix 

pB  and output matrix 
pC are shown in Fig. 2. 

Fig. 3 is a pole-zero map of the state-space model 

described by(13). There are five characteristic roots of the 

longitudinal motion of hypersonic vehicle in Fig. 3. Two 

bigger real eigenvalues -0.825 and 0.712 represent a 

statically unstable short-period mode. A pair of conjugate 

complex eigenvalues 510 0.0273 3 8. 8 i   portrays a 

lightly damped phugoid mode. A small real eigenvalue 

0.000485  indicates a mildly unstable height mode. 

Consequently, hypersonic cruising flight would be subject to 

attitude and height divergence that would require stabilizing 

feedback control. 
 

 
Fig. 3 Zero-pole map of system(13). 

4. CONTROLLER DESIGN 

A. LQ Controller 

The objective is to control the velocity and altitude of the 

hypersonic flight vehicle to follow a reference command, 

using control inputs such as elevator deflection, and the 

engine throttle. This will be done by designing full-state 

feedback controllers to achieve velocity and altitude tight 

tracking in the neighborhood of a trim condition.  

To increase model accuracy, a simple model of actuator 

dynamics can be added to the plant model as follows [7]: 
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After appending the actuator dynamics (14) to the plant 
model(13), we obtain a new system as follows: 
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For the model described by(15), the tacking controller 
design objective is to design the control signal u  to achieve 

zero output tracking error, which is defined as    

           1

T

d d dV V h h  e y y = .        (16) 

This tracking problem will be converted to a regulator 
problem as illustrated below.  

The integral tracking error is given by  

02 ( ) d
t
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It can be appended to system(15), and the augmented 

system can be written by 
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 Let the steady-state values be denoted by overbars and 
deviation from the steady-state values by tildes, then           
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The dynamics of the deviation system are 
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where the deviation y is equal to e   

1 1 1 1 .d         y y y y = y y e e 0 e    (21) 

According to the LQR control structure, the control 
design problem is to find control inputs to minimize the 
performance index function defined as 
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where Q is a real symmetric positive semi-definite matrix, 

R is a real symmetric positive definite matrix. 
Using the standard method, the optimal feedback control 

vector is given by  

 K u x ,                            (23) 

where the full state feedback control gain matrix is  

            1 TK R B P ,                      (24) 

and the matrix P  is the positive-definite solution of the 

algebraic Riccati equation: 

1 0T T   A P PA PBR P QB .     (25) 

B. State Observer 

Until now, we assume that the state variables can be 

obtained from measure instruments and design LQR 

controller directly. In reality, the state variables cannot be 

determined exactly from the measure instruments, so they 

must be estimated. A device performing an estimate of the 

state variables is known as an observer, and it can be 

expressed in the following form 
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ˆ ˆ ˆ  A B L Cx x u + y x ,             (26) 

where 1x̂  is the observer state vector and L is an observer 

gain matrix. Subtracting (15) from (26), we obtain the 

dynamics of estimate error 
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The objective is to find a matrix L such that the observer 

state vector 1x̂  approaches the state 1x  as time increases. 

This amounts to determining L so that all the eigenvalues of 

the matrix 1 1A LC , known as observer poles, lie in the left 

half of the complex plane. In implementing feedback 

controls, we must use the estimated state vector  1x̂  to 

replace the state vector 1x . The optimal feedback control 

vector is obtained using the deviation state vector x . While 

the deviation 2
x  can be simply calculated by integrating the 

tracking error e , the deviation 1
x  is more complex to obtain.  

When system  1 1 1, ,A B C  is steady, the derivatives of the 

state is equal to zero and the output is equal to the desired 

values, that is, the steady-state values denoted by overbars 

can be obtained as follows:                
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Thus the deviation  1
x  can be estimated by 

1 1 1
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hence,  
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Fig. 4 is the block diagram of the designed LQR 

controller with full state observer.  

5. SIMULATION RESULTS 

The control objective is to achieve a simultaneous 

tracking of velocity and altitude command. The deviations 

350 m/s for ,V  and 3500 m for h  from the trim state are 

reasonable, due to the maneuverability requirements for 

hypersonic flight vehicle.  The desired command signals dV  

and dh were generated by passing the velocity and height 

step signals through a filter 
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where  is the damping coefficient and n  is the natural 

frequency of the filter. 

Fig. 5 and Fig. 6 show the transient response of the 

outputs V and h  to a commanded step change in the 

velocity and altitude. It can be seen that the controller work 

well to provide asymptotic tracking of velocity and height 

with no significant overshot or steady state error. Fig. 7 and 

Fig. 8 present time history of the elevator deflection and 

engine throttle response. It shows that both control input are 

within the actuator saturation limit. However, it should be 

kept in mind that tuning the weighting matrices of the LQR 

problem for controllers can vastly alter the resulting 

performance. 

6. CONCLUSION 

This paper presents a control method used in designing 

the velocity and height tracking control law for a hypersonic 

flight vehicle. A simulation of the LQR controller design is 

presented, which uses the linearized longitudinal dynamics 

about a trimmed point in steady-state flight. The simulation 

results verified that the designed controller can be used to for 

velocity and height tracking control. 
 

 
Fig. 4 The designed controller. 
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Fig. 5 Velocity response. 

 
Fig. 6 Height response. 

 

 
Fig. 7 Input of elevator deflection angle . 

 
Fig. 8 Input of engine throttle setting. 
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