
 Scenario-based Testing for Onboard Subsystem

 Weihui Zhao
1
, Chenling Li

1
, Jidong Lv

2
, Lei Yuan

1

1 State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China

2 National Engineering Research Center of Rail Transportation Operation And Control System, Beijing Jiaotong University,

Beijing, China

11120328@bjtu.edu.cn

 Abstract - As a typical safety-critical system, the Onboard

subsystem is a core subsystem in CTCS-3(Chinese Train Control

System level 3), functional test is necessary to validate the

conformance relation between the Onboard subsystem and its

specification. Most of test cases are manually generated and can‟t be

reused and leads to repeated works when the specification is

changed. We introduced scenario-based method to improve the

efficiency and quality of onboard equipment testing. The scenario-

based hierarchy model of onboard subsystem was established

according to the specification, and all definition coverage criteria

were proposed with the all definition coverage observer. Then, an

automatic tool chain was used to establish the onboard automata

model and generate test cases for every scenario. Finally, a selection

algorithm was given to choose a complete test sequence from the test

cases, which was proven comprehensive to cover all running modes

and efficient for onboard equipment testing.

 Index Terms - scenario, test case, onboard subsystem, mode

transition

1. Introduction

 Test cases are the basis of the function testing and how to

automatically generate test cases that satisfy the system

specifications completely is the key issue of the test. Most of

the traditional test cases are manually generated which can‟t be

reused and leads to repeat works when the specification is

changed. With the widespread of formal method, a lot of

automatic test case generation technologies are introduced, and

scenario-based testing has been gradually used. In scenario-

based testing, scenario techniques
[3]

 are applied to the test case

expression, and the conversion tool will automatically

generates test cases that can be run on a certain test platform

and achieve the purpose of the test. Scenario-based test cases

make the system easier to understand, and are widely used in

the functional testing of the system.

 The onboard system of CTCS-3 is responsible for the

implementation of over-speed protection and safe distance

between trains, and any fault can lead to huge human injury or

wealth losing
[1]

. To ensure the correctness of functions in the

onboard system, function testing is mainly used to test the

conformance relation between the specification and the

onboard equipment.

To improve the testing efficiency and quality of the

onboard system, in this paper, a scenario- based test generation

algorithm is given in order to generate a complete test suit of

the function of the onboard system. We use automatic tools to

generate test cases automatically based on scenario technique.

Then, choosing algorithm is developed to achieve the test

sequence covering all modes of onboard system. The complete

model transition function test suit is derived on the basis of

scenario-based hierarchy model, automata network model, and

the observer theory.

2. Modeling of Onboard Subsystem

A. Scenario-based Hierarchy Model

 Analysis and management of the operating scenarios in

CTCS-3 specification are the basic work to get the model of

onboard system. Operating scenes describe the running

environment, and the train behaviour, the expectative running

modes in related condition of certain scene. We classified all

scenes in four groups in the modelling process, and made up

the scenario tree as system level, objective level and property

level. With this scenario technology, we established scenario

tree model of onboard subsystem shown in Fig. 1.

Operating

Scenarios

In CTCS-3

Specific

Zone

Scenarios

Protection

Scenarios

Management

Scenarios

Movement

Authority

Power Off

Power On

Neutral Zone

RBC

Handover

Joining /

Splitting

Degraded

Situations

Level

Transition

 Shunting

Temporary
Speed

Restriction

General

Scenarios

Full
Supervisio

n mode

Stand-By

mode

Isolation

mode

Sleeping

mode

Trip

mode

 On Sight

mode

Call On

mode

Post Trip

mode

Shunting

mode

Special Track

Specification

of CTCS-3

Composite

scenes
Sub-scenes

Atomic

scenes

System

Level
Objective

Level

Property

Level

Additional

Scenarios

Disaster

protection

Manual

release route

Out / in

segment

Fig. 1 Scenario-based Hierarchy Model of Onboard Subsystem

International Conference on Computer, Networks and Communication Engineering (ICCNCE 2013)

© 2013. The authors - Published by Atlantis Press 80

mailto:11120328@bjtu.edu.cn
app:ds:classify

 System level represents a function packet, reflecting the

abstractive function set of the system. It consists of several

operating scenarios, called composite scene; Objective level

represents the specific function item and the related condition

and operation, called sub-scene; Property level represents the

minimum function of the system and can be tested

independently, called atomic scene.

 As in Fig. 1, the function scenarios are classified as

general scenarios, protection scenarios, specific scenarios,

management scenarios and additional scenarios in system

level. In objective level, we match composite scene of CTCS-3

with the operating scenarios respectively as the idea in

Reference [2]. The train operating scenarios are expressed by

the train operating modes and their transitions, which are used

as the atomic scenes. Each scenario contains one or more

running modes, so the mode transition can be described with

scenario. For example, mode SB to mode CO can be achieved

in the scenario, guiding track departure instruction after power

on.

B. Kernel-Environment Automata Model

 The on-board equipment is a computer-based subsystem

that supervises the movement of the train to which it belongs,

on basis of information exchanged with the trackside sub-

system
 [4,5]

。The interoperability requirements for the on-board

equipment are related to the functionality and the data

exchange data exchange between the on-board sub-system and

the driver, the train, the specific transmission modules. The

described structure is depicted in Figure 2.

DMI

Track

Circuit

Information

Receiver

Train

Balise

JRU

Kernel: Vital Computer

RTM

Driver

RBC

(Radio

Block

Center)

BTM

FIS

TIU

FIS

SDU

FIS

GSM-R

CTCS

Onboard

Velocity Sensor

FFFIS FFFIS

FFFIS

Downloading

tool

Fig. 2 Architectural Scheme of Onboard Subsystem

 Automotive is suitable for modelling and analysis of train

control system. Onboard equipments consist of vital computer,

train, RBC, balise and driver. Based on the atomic scenes, the

network automata model of the onboard subsystem is

established with tool Uppaal, according to the mode transition

table, symbolic description and transition conditions in CTCS-

3 specification. The entire system network automaton model is

divided as kernel part and environment part, Kernel(VC)

||Environment（Train, Driver, RBC, Balise）, named kernel-

Environment model. Kernel automaton, train automaton, balise

automaton, RBC automaton and driver automaton are parallel

and they constitute the automata network. The location and

edge is defined as the following symbols:

1）Location: <l，σ>, l is the currant location and σ is

related variables of location l;

2）edge: e: <l, σ> → < l‟，σ‟>, location l will change to l‟

and variable set σ to σ‟ with certain condition.

3 ） ‟!‟ represents sending messages, and „?‟ represents

receiving messages, realizing the message synchronization in

the model to deliver information among the members.

For example, the Kernel automata model is shown in Fig.

3. We define the kernel part of onboard subsystem as Tk = < S,

S
0
, A, X, I, E >, according to the definition of automata, in

which the set of locations is S = {SB, SH, FS, OS, CO, SL,

TR, PT, IS}, covering all the running modes in CTCS-3. The

edge stands for modes transition as the transition rule in

chapter 4.4 of reference [4].

Fig. 3 Kernel Automaton

For the sub-scene level, operating scenarios are simulated

in kernel automata according to the procedure described in

chapter 3 of Reference [5]. The scenarios variables are defined

with set G, P, S, M and A, depicted in Table 1.

TABLE I Scenario Variables

Symbol Operating Scenarios

g1, g2, g3,
g4

Power On, Power Off, Movement Authority
Out / in segment

p1, p2,
p3

Level Transition, RBC Handover ,
Degraded Situation

s1, s2,
s3

Temporary Speed Restriction,
Pass Neutral Zone, Special Track

m1, m2 Joining / Splitting, Shunting

a1, a2 Disaster protection，Manual release route

Fig. 4 shows the four parts of environment automata,

providing the mode transition conditions to Kernel automata.

81

app:ds:procedure

a) Driver Automaton b) Balise Automaton c) RBC Automaton

d）Train Automaton

Fig. 4 Environment Automata

The information between onboard system and Train is

train braking information and train state information, between

onboard system and RBC is MA message and train location,

between On-board system and Balise is train location and

Hazard protection, between onboard system and Driver is the

conform and choice of operation.

3. Test for Onboard Equipment

A. Automatic Generation of Test Cases

 On the basis of Kernel-Environment model, the test cases

can be generated automatically in automatic tool with the

observer automata theory.

CoVer
[7]

 is a tool for model-based testing of real-time

systems, developed at Uppsala University since 2005. We use

it to automatically generate test suites from the model. The

tool finds test case from the initial location, and traverses all

its possible successive locations with depth-first search

method. As an automaton, observer
[6]

 can be used to specify

coverage criteria for test generation and monitor the location

and edge in test trace. Whenever the coverage item has been

covered, the observer location is called “accepting location”.

The accepting set records all the test items matching the

coverage criteria described by the observer and it will guide

test cases generation as a configuration file in CoVer. The test

case will be generated when a location is repeatedly traversed.

In terms of Kernel- Environment automata and the test target,

we proposed test coverage criteria and give the syntax

description of all definition coverage observer as following:

 

 

   

Observer defineObs varid X; {

node defined varid, edgeid ;

rule start to defined X,E with def X,E ;

accepting defined;

}

The all definition coverage observer has an accepting

location du (X; E), where X is a variable name, E is an edge

on which X is defined, and only the defining edges are

required to be covered. In the Kernel automaton, G, P, S, M

are used to represent the scenarios of onboard subsystem, so X

in the syntax above is the set {g1, g2, g3, g4, p1, p2, p3, s1,

s2, s3, m1, m2}. Then, the test suit is automatically generated

by tool CoVer. For example, the test cases for management

scenarios are generated by searching symbol m1 and part of

the outcome script is shown in Fig. 5. With the test cases, we

can test the management scenarios as the generated trace: SB -

> FS -> SB -> CO -> TR -> PT and SB -> SH -> SB -> CO ->

TR -> PT, covering their related modes and mode transition,

such as FS to SB, SB to SH and SH to SB that are included in

shunning scenario.

Fig. 5 Part of Test Cases Script for Joining Scene

B. Test Sequence for All Running Modes

The scenario trace is based on the operating scenes and

described as test suit, which shows the mode transition.

Selecting mode coverage test cases from the test suit in CoVer

is pivotal to make up effective test sequence of onboard

subsystem. Thus the problem of finding all mode test sequence

is become to find the following trace that covers all modes in

the accepting location set Q of observer. An algorithm was

designed to get test sequence covering modes entirely:

82

 

 

i

i

i j x

i j

i j

Construct an trace TR;

i = 0; j = 0;

while(i < ScenarioNum) do

Select test suit A : includes more modes;

Max = TotalTrace(A);

REPEAT

if exist one mode in A .tr q Q then

Add TestCase_Mode A .tr .q,Q ;

Store TestCase_Edge A .tr ,TR ;

j = j+1

：

i j

;

Find_nextTrace(A .tr);

UNTIL j = Max;

i = i +1; j = 0;

RETURN TR;

 The programmed algorithm is described as following: for

any certain scenario test case set A ,get its trace number

MaxTrace, assume the accepting location set of observer is

Q ,and our target sequence is TR. Define two variables i=0,

j=0 as loop number.

(1) Select a test case Ai from the outcome script that covers

modes as much as possible;

(2) If there is new mode in the test trace Ai.trj, add Ai.trj to

TR and tr.mode to Q;

(3) Make the pointer variable j = j + 1, and find next trace

of Ai, (Find_nextTrace(tri));

(4) Execute step 2 and 3 until j= MaxTrace;

(5) Make i=i+1 and go on the same work for next scenario

Ai, repeat step 2, 3 and 4;

(6) Return the target sequence TR.

 The target sequence was generated from the test suit with

the algorithm above, see in Table Ⅱ, covering all running

modes in CTCS-3 specification connected by proper scenarios.

TABLEⅡ Test Sequence of All Mode Coverage

Case Test Item

case 1 SB_to_CO_to_TR_to_PT_to_FS_to_SB_to_SL

case 2 SB_to_SH _to_ SB_to_CO _to_TR _to_PT

case 3 SB_to_IS _to_SB _to_CO _to_TR _to_PT

case 4 SB_to_FS _to_OS _to_ SB _to_SL

4. Conclusion

 We use automated tools to get test cases automatically

based on scenario technique and timed automata theory to

improve the testing efficiency and quality, and then apply in

onboard equipment testing. This method can avoid the

weakness of manual generation, such as the test cases can‟t be

reused and leads to repeated works when the specification is

changed. Besides, scenario-based testing method for onboard

equipment testing is proven very useful to test all modes of

onboard system with proper operational scenes that connect all

the modes automatically.

5. Acknowledgements

The research was supported by the project of National High-

tech R&D Program of China: Safety certification and

assessment technology of High-Speed railway signal system;

the Fundamental Research Funds for the Central Universities:

Research of formal design and development method in High-

Speed train control system

6. References

[1] LV Jidong. Hierarchical Formal Modeling and Verification Train Control

System [D]. Beijing: Beijing Jiaotong University, 2011. In Chinese.

[2] Beizer B. Black-Box Testing Technique for Functional Testing of

Software and Systems, Wiley,New York, USA9,1995.

[3] Wang Shuai, Ji Yingdong, Yang Shiyuan. Scenario-based modeling

method for CTCS-3 train control system [J]． Journal of The China

Railway Society, 2011,33（9）.

[4] Yuan Lei, Lv Jidong. Model-Based Test Cases Generation for Onboard

System [J]．Journal of The China Railway Society, in press.

[5] Department of railway ministry science and technology．CTCS-3 System

Requirement Specification [M] ． Beijing: China Railway Publishing

House, 2009.

[6] Department of railway ministry science and technology．CTCS-3 System

Overall Technical Program [M] ．Beijing: China Railway Publishing

House, 2009.

[7] Johan Blom, Anders HESSEL, PETTERSSON P. Specifying and

Generating Test Cases Using Observer Automata[C] GABOWSKI J,

NIELSEN B. Proceedings 4th International Workshop on Formal

Approaches to Testing of Software 2004 (FATES,04), Volume 3395 of

LNCS. Springer-Verlag, 2005: 125-139

[8] HESSEL A, PETTERSSON P. COVER—A Real-time Test Case

Generation Tool [Z]. Accepted for the 3rd Workshop on Model-Based

Testing 2007 (MBT07).

83

app:ds:programmed
app:ds:algorithm
app:ds:variable

