
On the Decomposition of Posets into Minimum Set

Node-Disjoint Chains

Yangjun Chen
1
, Yibin Chen

2

Dept. Applied Computer Science, University of Winnipeg, Canada
1
y.chen@uwinnipeg.ca,

2
chenyibin@gmail.com

 Abstract - One of the most famous results in the theory of

partially ordered sets is due to Dilworth (1950) who showed that the

size of a minimum decomposition (into chains) of a partially ordered

set S is equal to the size of a maximum antichain, which is a subset of

pairwise incomparable elements. However, up to now, the

bestalgorithm to decompose S into a minimum set of chains needs

O(n3) time, where n is the number of the elements in S. In this paper,

we address this problem and propose an algorithm which produces a

minimum decomposition in O(n2) time and O(m + n)space,

where is the size of a maximum antichain and m is the number of

relations between elements (i.e., the number of pairs (a, c) such that

ac).In general, is much smaller than n.

Keywords: Partially Ordered Sets,; Posets; Chains, Antichains.

1. Introduction

A partial order in a set S is a relation such that for each a,

b, and c in S:

1. aais true ( is reflexive),

2. ab and b c imply a c ( is transitive), and

3. a b and b a imply a = b ( is antisymmetric).

If we have a partially ordered set (posetfor short) S = (S, ), a

chain in S is a non-empty subset C = {a1, a2, ..., ak} S such

that

 a1 a2... ak.

Two elements of S are called comparable if they appear to-

gether in some chain in S; elements which are not comparable

are called incomparable. A non-empty set, in which every pair

of elements is not comparable, is called an antichain.

Since each single element in S is itself a chain, it is always

possible to partition the elements in S into disjoint chains.

Such a partition is called adecomposition and a decomposition

consisting of the smallest number of disjoint chains is called

minimum. According to Dilworth [6], the size of a minimum

decomposition equals the size of a maximum antichain.

Many proofs of Dilworth’s Theorem are known [5, 9, 10,

14, 17, 18]. Among them, the argument provided by Fulkerson

[10] is straightforward, by which a bipartite graph GS with

bipartite (V1, V2) for S = {a1, a2, ...,an} is constructed, where

V1 = {x1, x2, ..., xn}, V2 = {y1, y2, ..., yn} and an edge joining

xiV1 to yjV2 whenever aiaj. Let Mbe a maximum matching

of GSandDa minimum decomposition of S. Fulkerson proved

that |D| = n - |M|. On the other hand, by the König’s theorem

([2], page 180), we also have  = n - |M|, where   is the

size of a maximum antichain of S. So, |D| =  . Using the

algorithm proposedby Hopcroft and Karp [11], M can be

found in O(m n) time, where m is the number of all pairs (a,

c) such that a c. Therefore, the maximum size of antichains

can be determined in O(m n) time. However, the method

hinted by the Fulkerson’s proof cannot be efficient since to

construct GS we have to first produce all the possible transitive

relations. By a transitive relation, we mean a relation a  ciff

there exists b such that a  b and bc.We need O(n
3
) time and

O(n
2
) space to generate all these relations.

In [12], Jagadish discussed an algorithm for finding a

minimum set of node-disjoint chains that cover a directed

acyclic graph G(V, E) (DAG for short, which contains no cy-

cles and can be considered as a poset) by first creating the

transitive closure TCG of G and then finding a minimum set of

node-disjoint paths of TCG. TCG itself is a directed graph

G*(V, E*) with (v, u) E* iff there is a path from v to u in

G. Thus, the problem can be solved by transforming it to a min

network flow [7, 13, 20]. The time complexity of finding a

transitive closure is O(n


), and the min network flow also

needs O(nm) time.So the time complexity of the whole

working process is bounded by O(n


).

In this paper, we propose an efficient algorithm to find a

minimized set of disjoint chains for S. For this purpose, we

represent S as a DAG, in which we have an arc uv if u v.

Removing any arc uv if there is path of length  2 from u

to v, we get another graph. A minimum set of node-disjoint

chains that cover the graph G must be a decomposition of S.

The algorithm runs in O(n
2
) time and in O(m + n)

space.

The remainder of the paper is organized as follows. In Sec-

tion 2, we discuss an algorithm to stratify a DAG into different

levels and review some concepts related to bipartite graphs, on

which our method bases. Section 3 is devoted to the

description of our algorithm to decompose a DAG into chains.

Finally, a short conclusion is set forth in Section 5.

2. Graph stratification and bipartite graph

Our method is based on a DAG stratification strategy and

an algorithm for finding a maximum matching in a bipartite

graph. Therefore, the relevant concepts and techniques should

be first reviewed and discussed.

International Conference on Computer, Networks and Communication Engineering (ICCNCE 2013)

© 2013. The authors - Published by Atlantis Press 125

2.1 Stratification of DAGs

Let G(V, E) be a DAG with |V| = n and |E| = m. We

decompose V into subsets V0, V1,...,Vh such that V = V0 V1

 ... Vh and each node in Vi has its children appearing

only in Vi-1, ..., V0 (i = 1, ..., h), where h is the height of G, i.e.,

the length of the longest path in G. For each node v in Vi, we

say, its level is i, denoted l(v) = i. We also use Cj(v) (j <i) to

represent all those children of v, which appear in Vj. Therefore,

for each v in Vi, there exist i1, ...,ik (il<i, l = 1, ..., k) such that

the set of its children equals)(
1

vCi  ... )(vC
ki

. Let Vi = {v1,

v2, ...,vl}. We use (j <i) i

jC to represent Cj(v1)  ... Cj(vl).

Such a DAG decomposition can be done in O(m) time, by

using an algorithm discussed in [4].

As an example, consider the graph shown in Fig. 1(a). In

Fig. 1(b), the nodes of the DAG shown in Fig. 1(a) are divided

into four levels: V0 = {a0, b0, c0, d0, e0}, V1 = {b1, c1, d1, e1}, V2

= {b2, c2, d2, e2}, and V3 = {b3, c3, d3}. Associated with each

node at each level is a set of links pointing to its children at

different levels.

2.2 Concepts of bipartite graphs

Now we restate two concepts from the graph theory which

will be used in the subsequent discussion.

Definition 1 (bipartite graph [2]) An undirected graph

B(VB, EB) is bipartite if the node set VBcan be partitioned into

two sets V1 and V2 in such a way that no two nodes from the

same set are adjacent. We also denote such a graph as B(V2,

V1; EB). 

For any node v B, neighbour(v) represents a set

containing all the nodes connected to v.

Definition 2 (matching [2]) Let B(V2, V1; EB) be a bipartite

graph. A subset of edges E’EB is called a matching if no

two edges in E’have a common end node. A matching with the

largest possible number of edges is called a maximal

matching.

LetMbe a matching of a bipartite graph B(V2, V1; EB). A

node v is said to be covered by M, if some edge of M is

incident with v. We will also call an uncovered node free. A

path or cycle is alternating, relative to M, if its edges are

alternately in EB\M and M. A path is an augmenting path if it

is an alternating path with free origin and terminus. Let

v1 v2 ...  vkbe an alternating path with (vi, vi+1)

EB\M and (vi+1, vi+2) M (i= 1, 3, ...). By transferring the

edges on the path, we change it to another alternating path with

(vi, vi+1) M and (vi+1, vi+2) EB\M (i= 1, 3, ...). In

addition, we will use freeM(V1) and freeM(V2) to represent all

the free nodes in V1and V2, respectively. Finally, if (u, v)

M, we say, u covers v with respect to M, and vice versa.

Much research on finding a maximal matching in a bipartite

graph has been done. The best algorithm for this task is due to

Hopcroft and Karp [11] and runs in O(m n) time, where n =

|VB| and m = |EB|. The algorithm proposed by Alt, Blum,

Melhorn and Paul [1] needs O(n
1.5
)/(lognm) time. In the

case of large m, the latter is better than the former.

3. Algorithm description

In this section, we describe our algorithm for the DAG de-

composition.

The main idea behind it is a kind of newly introduced arcs,

called virtual arcs, used to transfer the reachability

information from lower levels to higher levels. First, we

discuss an example to motivate such a concept in 3.1. Then, in

3.2, we give a formal definition of virtual arcs and show how

they can be used to create disjoint chains. In 3.3, we briefly

discuss the removing of virtual arcs from created chains to get

a final result.

3.1 Chain creation

The main idea of our algorithm is to construct a series of

bipartite graphs for G(V, E) and then find a maximal matching

for each of such bipartite graphs using Hopcroft-Karp

algorithm. However, by simply combining all the maximal

matchings, we may get a set of chains, which is not minimal.

The reason for this is that a free node relative to a certain

maximal matching is not considered for a bipartite graph at a

higher level. Therefore, it should be hoisted and involved in

the computation fora next bipartite graph.Especially, some

new arcs incident to itshould be created.

We start our discussion with the following specification:

V0’ = V0.

Vi’= Vi {free nodes at lower levels, but hoisted to Vi}

for 1 ih - 1.}

Ci = i
i 1C  {all the new arcs from the nodes in Vi to the

nodes hoisted to Vi-1’} for 1 ih - 1.

G (Vi, Vi-1’; Ci) - the bipartite graph containing Vi and Vi-1’.

Mi - a maximal matching of G(Vi, Vi-1’; Ci).

Ni - a |Vi-1’|  |Vi| matrix, representing G(Vi, Vi-1’; Ci).

a0

Fig. 1 A DAG and its stratification

b2

b0

b1

c2

c0

c1

d2

d0

c3 d3

c0 d0 e0 b0
V0:

V2:

(a) (b

)

d1

e2

e0

b3

e1

b3 c3 d3

c2 d2 d2 b2

c1 d1 e1 b1

a0

V1:

C0(e1) = {e0}

C0(b1) = {a0, b0, c0} C0(e1) = {c0,

d0}

C0(d1) = {e0}

C1(b2) = {b1} C1(e2) = {c1} C1(d2) = {c1, d1}

C1(e2) = {c1, e1}

V3:

C2(b2) = {b3}

C0(b2) = {a0}

C2(c3) = {b2,

c2}

C2(d3) = {c2}

126

Li - a |Vi|  (n – (|Vi| + … + |V0|)) matrix, representing all

those arcs in E, which connect the node inG\(V0  … Vi) to

the nodes in Vi.

In addition, we distinguish between two kinds of new arcs,

as defined below.

Definition 3(transitive arcs)Let v be a node (in Vi-1’)

hoisted to Vi. If there exist uw E and

w vCiwithuVj (for some j >i) and wVi,

then,add uvif it is not an arc in E.The new arc is referred

to as a transitive arc.

Definition 4(alternating arcs)Let v be a node (in Vi-1’)

hoisted to Vi. If there existswVi-1’ such that v is connected

to w through an alternating pathG(Vi, Vi-1’; Ci), and u Vj

(for some j >i) such that one of the two conditions holds:

- uwE, or

- there is a node w’ Visuch that uw’E and

w’wCi,

adduvif it is not an arc in E or has not yet been created

as a transitive arc. The new arc is referred to as an

alternating arc. 

We further distinguish between two kinds of transitive arcs:

- u v is an actual transitive arc if there is a path in E

which connects u andv;

- uv is avirtual transitive arc if any path connectingu

andv contains at least one alternating arc.

Both virtual transitive and alternating arcs are called

virtual arcs.The following example helps for illustration.

Example 1 Consider the graph shown in Fig. 1(a).This

graph can be divided into four levels as shown in Fig. 1(b).

The first bipartite graph G(V1, V0; C1) is shown in Fig. 5(a).

A possible maximal matching M1 of it is shown in Fig. 2(b).

Relative to M1, a0 and b0 are two free nodes in V0.

So they will be promoted to V1.At the same time,

twotransitivearcsb2a0and b2b0(represented by two

thick arrows in Fig. 2(c)) will be created for the following

reasons:

 There exists b1 V1 such that b2 b1 and b1 a0.

 There exists b1 V1 such that b2 b1 and b1 b0.

In addition, six alternating arcs: c2 a0,d2a0,

e2a0, c2 b0,d2b0 and e2b0, will also be

created (see dashed arrows in Fig. 2(c)):

 c2 a0,d2a0 and e2a0 are created due to the

alternating path a0 b1 c0in G(V1, V0; C1) and the

reachability of c0 respectively from c2,d2 and e2through c1 in

V1.

 c2 b0,d2b0 and e2b0 are created due to the

alternating path b0 b1 c0 and the reachability of c0

respectively from c2,d2 and e2through c1 in V1.

We notice thatP1 = a0 b1 c0 c1 d0 and P2

= b0 b1 c0 c1 d0 in G (V1, V0; C1) are another

two alternating paths starting from a0 and b0, respectively.P1

and the reachability of d0fromc2,d2 and e2through c1 in V1 will

also lead to the creation ofthe first three alternating arcs; and

P2and the reachability of d0from c2, d2 and e2through c1 in V1

will also lead to the creation of the remaining threealternating

arcs. However, each new arc is recorded only once.

In order to create such new arcs efficiently, we can use the

matrix multiplication. For example, by producing NL1= N1L1,

we will easily get all the transitive arcs incident to all the free

nodes in V0 when they are promoted to V1.However, to create

all the alternating arcs, more effort is neededwith the following

procedure being used, in which we denote byL(u, *) and L(*,

v) a row corresponding to node u and a column corresponding

to a node v in a matrix L, respectively.For two graphs G1, G2,

we will also use G1\G2 to stand for a graph obtained by

deleting the arcs of G2 from G1; and G1 G2 for a graph

obtained by adding the arcs of G1 and G2 together.

1. Let v be a free node in V0. Figure out all those nodes

u1, …,ukin V0such that each ui (i = 1, …, k)is connected to v

through an alternating path relative to M1.

2. Letv1, …,vjbe all the nodes in V1. Denote L0’ = L0\(L0(*, v1)

 … L0’(*, vj)). (Recall that L0 is a matrix representing

all those arcs in E, which connect the nodes in G\V0 to the

nodes in V0.)

3. Add (bit-wise OR)NL1(u1, *), … NL1(uk, *) to NL1(v). Add

L0’(u1, *), … L0’(uk, *) to NL1(v, *).

4. Repeat (1) - (3) for each free node in V0.

Example 2Continued with Example 1. With respect to the

firstbipartite graph, we have bipartite graph, we have

bipartite graph, we have

b1 c1 d1 e1 b2 c2 d2 e2 b3 c3 d3

1 0 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0

a0

b0

c0
L0

=
d0

e0

b1

b0

c1

c0

d1

d0 a0 V0:

V1: b1

b0

c1

c0

d1

d0 a0

M1:

c1 d1

d2

e1

e2

b1
V1’:

V2:

(a) (b

)

(c)

Fig. 2 Illustration for alternating arcs

e1

e0 e0

e1

b0 a0

c2 b2

127

In NL1, NL1(a0, b2) = 1 and NL1(b0, b2) = 1 represent the

two transitive arcs newly created (see Example 1.)

In order to create all the alternating arcs, we will check, for

each free node in V0, all those nodesconnected toit through an

alternating path.

For example, both c0 andd0 are reachable from a0.So we

need to add L0’(c0, *)andL0’(d0, *) (both are (0, 0, 0, 0, 0, 0,

0)), as well asNL1(c0, *) = (1, 1, 1, 1, 0, 0, 0) and NL1(d0, *) =

(0, 1, 1, 1, 0, 0, 0) toNL1(a0, *) to get all the alternating

arcsincident to a0:

 NL1(a0, *) = (1, 1, 1, 1, 0, 0, 0).

In addition, we canalso addL0’(a0, *) = (0, 0, 0, 0, 1, 0, 0) to

NL1(a0, *). Then,all the arcs incident to a0 can be represented

by NL1(a0, *):

 NL1(a0, *) = (1, 1, 1, 1, 1, 0, 0).

In the same way, we will change NL1(b0, *) to

 NL1(b0, *) = (1, 1, 1, 1, 0, 0,0).

The problem of the above working process is that the

difference between the virtual arcs and the actual arcs cannot

be recognized; but they need to be handled differently in the

subsequent computation. For this reason, we introduce a

variant of the Boolean algebra, by which we have three values:

0, 1, and 1, defined as follows:

- Ni(v, u) = 0 if u is not connected to v through any path.

- Ni(v, u) = 1 if u v is an arc in E or an actual transitive

arc.

- Ni(v, u) = 1 if u v is an alternating arc or a virtual

transitive arc.

In the subsequent discussion, we refer to1 as a marked

1.Furthermore, the definitions of the  and operations in the

classical Boolean algebra need to be slightly changed as

follows:

It is almost the same as the classical Boolean algebra.

However, by the new Boolean algebra, the properties of new

arc can be simply represented when they are created by the

matrix multiplication or by the vector bit-wise OR operations.

Based on the new Boolean algebra, we design a general

process for creating new arcs for the free nodes in Vi-1’ (i 1)

relative to Mi when they are promoted to Vi. Initially, NL0 is set

to be .

AlgorithmCNA(F)

Input: F – a set of free nodes in Vi-1’ relative to Mi.

Outout: a set of new arcs.

begin

1. LetF = {v1, …,vk}.

2. ConstructLi andNi for G(Vi, Vi-1’; Ci).

3. (create transitive arcs) Create NLi = Ni Li;

4. For each vj (j = 1, …,k),let w1, …,wp be all those nodes

inVi-1’each connected tovj through an alternating path in

G(Vi, Vi-1’; Ci).

i) For each wq (q= 1, …,p), make a copy xq of NLi(wq, *)

and a copy yq of Li-1’(wq, *).

ii) Change each 1 in xqto1; change each 1 in yq to 1. (*Note

that all 1’s in xq and yq remain unchanged.*)

iii) (create alternating arcs) For each q,add both xqand yqto

NLi(vj, *).

5. (add remaining arcs) For each vj (j = 1, …,k),add Li-1’(vj, *)

to NLi(vj, *) if vjVi-1; otherwise (vj is a node promoted to

Vi-1’ from a lower level), add NLi-1(vj, *) to NLi(vj, *).

6. Remove Li-1, Li-1’, and NLi-1 (since they will not be used any

more.)

end

In the above algorithm, the execution of line 3 will create

all the actual and virtual transitive arcs while the execution of

line 4 will create all new alternating arcs incident to the nodes

hoisted to Vi. In line 5, all the free nodesin vj(relative to Mi) in

Vi-1’ are divided into two groups. The first group contains all

those free nodesbelonging to Vi-1 and for eachvjin this groupwe

add Li-1’(vj, *) to NLi(vj, *). In the second group, each free

nodevjis a node promoted from a lower level to Vi-1’, for

whichwe add NLi-1(vj, *) to NLi(vj, *). Thus, any arc (in E or

newly created) connectinga node u G\(V0  … Vi) to vjwill



0

1

1

0

0

0

0

1

0

1

1

1

0

1

1



0

1

1

0

0

1

1

1

1

1

1

1

1

1

1

NL1 = N1 L1 =

a0

b0

c0

d0

N1 =

b2 c2 d2 e2 b3 c3 d3

1 0 0 0 0 0 0

0 1 1 1 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

b1

c1

d1

L1

=

b2 c2 d2 e2 b3 c3 d3

1 0 0 0 0 0 0

1 0 0 0 0 0 0

1 1 1 1 0 0 0

0 1 1 1 0 0 0

0 0 1 0 0 0 0

b1 c1 d1 e1

1 0 0 0

1 0 0 0

1 1 0 0

0 1 0 0

0 0 1 1

a0

b0

c0

d0

e0
e1

e0

b2 c2 d2 e2 b3 c3 d3

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a0

b0

c0
L0’

=
d0

e0

128

be stored in NLi(vj, u).In line 6, we remove Li-1, Li-1’, and NLi-1

since in the subsequent computation they will not be used any

more. However, Ni-1 is kept since all Ni’s will be used to

remove alternating arcs after we have generated a minimum set

of chains.

Example 3As shown in Example 2, by applying the above

algorithm to create the new arcs fora0 andb0, we will get

 NL1(a0, *) = (1, 1,1,1,1, 0, 0), and

 NL1(b0, *) = (1, 1, 1, 1, 0, 0,0).

Accordingly,G(V2, V1;
2

1C) is changed toG(V2, V1’; C2), as

shown in Fig. 2(c).

Assume that the maximal matching M2 found for G(V2, V1’;

C2) is shown in Fig. 3.

Relative to M2, c1 andd1 are two free nodes in V1’. So they

will be hoisted to V2. Again, in order to determine the arcs

incident to them, we will generate N2, L2, and

NL2= N2L2as shown below:

In addition, L1’ can be easily constructed by removing all

the columns corresponding to the nodes inV2 from L1. It is a

matrix with each entry being 0.We notice that a0 is connected

toc1 through an alternating path c1 c2 a0 in G(V2, V1’;

C2) and b0 is connected tod1 through another alternating path

d1  d2  d1. Then, the following operations will be

carried out by running Algorithm CNA():

1. Create a copy x of NL2(a0, *) = (1, 1,1) and a copy x’of

NL2(b0, *) = (1, 1,1).

Create a copy yof L1’(a0, *) and a copy y’of L1’(b0, *) (both

x’ and y’ are (0, 0, 0).)

2. Change each 1 in x, x’, yand y’ to 1.

3. Add x andyto NL2(c1, *) = (0, 1, 1). Then, add L1’(c1, *)

toNL2(c1, *).These operations will change NL2(c1, *) to

(1,1,1).

4. Add x', y’ and L1’(d1, *) to NL2(d1, *). Thiswill

changeNL2(d1, *) to (1,1,1).

Thus, G(V3, V2’; C3) will be a bipartite graph as shown in Fig.

4(a).

Assume that the maximal matching M3 found for G(V3,

V2’; C3) is a set of edges shown in Fig. 4(b). Then, by

combining M1, M2, and M3, we will get a set of chains as

shown in Fig. 5.

This set contains 6 chains. It must be minimal since there

exists a subset of 6 nodes {a0, b0, c0, d0, d1, e1} in the graph,

in which each pair of nodes are not reachable from each other.

However, some of chains contain alternating arcs which should

be removed to get the final result.

3.3 Removing alternating arcs

We call an arc on a chain a chain arc. Our purpose is to

replace each alternating chain arc with an arc in E or a real

transitive arc.

To this end, we use Ai (i = 1, …,h - 1) to represent a set

containing all those alternating chain arcs at level i, i.e., all the

alternating arcs e with  (e) = i. Notice that anAi may be .

Then, we proceed to remove Aj’stop-down level by level in

the descending order of level numbers. In general, we can

remove an alternating chain arc in two possible ways as

follows.

Let u1v1, …,ukvkbe all the alternating chain arcs

with each vj(j =1, …, k) being in Vi’.Then, vj(j =1, …,k) must

be a node hoisted toVi’ from Vi-1’. For each uj, we will search

G from uj to the nodes in Vi andconnect uj to all those nodes in

Vi, which are reachable from ujthrough a path in E. In addition,

we will descend any nodeu at a level higher than level i+ 1 to i

Fig. 5A set of chains containing alternating arc

b2

b0

b1

c2

c0

c1

d2

d0 a0

c3 d3

V0:

V1:

V0:

V1:

V2:

V3:

d1

e2

e0

b3

e1

b3

d1

c3

c2

d3

d2 c1

M3:

c2 d2

d3

e2 b2
V2’:

V3:

(a) (b

)

Fig. 4 A bipartite graph and a maximum matching

e2
d1 c1

c3 b3

b2

NL2 = N2 L2 =

b3 c3 d3

1 1 1

1 1 1

1 1 0

0 1 1

0 0 0

0 0 0

a0

b0

b1

c1

d1

e1

N2 =

b2 c2 d2 e2

1 1 1 1

1 1 1 1

1 0 0 0

0 1 1 1

0 0 1 0

0 0 0 1

a0

b0

b1

c1

d1

e1

L2

=

b3 c3

 d3

1 1 0

0 1 1

0 0 0

0 0 0

b2

c2

d2

e2

Fig. 3 Maximum matching for G(V2, V1’; C2)

V1’:

V2: M2:

c1 d1

d2

e1

e2

b1 b0 a0

c2 b2

129

+ 1if itis the ending node of some chain found up to now; and

connect it to all those nodes in Vi’, which are reachable from it

through a path in E. We denote by Ui+1such a new graph.

Removing all the alternating arcs from Ui+1, we will get

another graph Ui+1’. Let Mi+1’be a set of edges obtained by

removing all the alternating edges from Mi+1. The first way is

to remove an alternating arcujvjby finding an alternating

path P relative to Mi+1’in Ui+1’, satisfying one of the following

conditions:

1. P starts at vjand ends at a node descended to level i+ 1, or

2. P starts at a node u (in Vi), which is the starting node of a

chain, and ends at uj.

4. Conclusion

In this paper, a new algorithm for finding a minimal chain

decomposition of a partially ordered set S is proposed. The

algorithm needs O(n
2
) time and O(m + n) space, where n

is the number of the elements in S,m is the number of relations

between elements and  is the size of a maximum antichain.

The main idea of the algorithm is the concept of virtual arcs

and the DAG stratification that generates a series of bipartite

graphs which may contain virtual arcs. By theHopcropt-Karp’s

algorithm, we find a maximal matching for each of such

bipartite graphs, which make up a set of node-disjoint chains.

A next step is needed to replace all the virtual chains with the

arcs in E or the actual transitive arcs to get the final result.

References

[1] H. Alt, N. Blum, K. Mehlhorn, and M. Paul, Computing a maximum

cardinality matching in a bipartite graph in time O(n1.5)/(log nm),

Information Processing Letters, 37(1991), 237 -240.

[2] A.S. Asratian, T. Denley, and R. Haggkvist, Bipartite Graphs and their

Applications, CambridgeUniversity, 1998.

[3] C. Chekuri and M. Bender, An Efficient Approximation Algorithm for

Minimizing Makespan on Uniformly Machines, Journal of Algorithms

41, 212-224(2001).

[4] Y. Chen and Y.B. Chen, An Efficient Algorithm for Answering Graph

Reachability Queries, in Proc. 24th Int. Conf. on Data Engineering

(ICDE 2008), IEEE, April 2008, pp. 892-901.

[5] G.B. Dantzig and A. Hoffman, On a theorem od Dilworth, Linear

Inequalities and related systems (H.W. Kuhn and A.W. Tucker, eds.)

Annals of Math. Studies 38(1966), 207-214.

[6] R.P. Dilworth, A decomposition theorem for partially ordered sets,

Ann. Math. 51 (1950), pp. 161-166.

[7] E.A. Dinic, Algorithm for solution of a problem of maximum flow in a

network with power estimation, Soviet Mathematics Doklady,

11(5):1277-1280, 1970.

[8] S. Felsner, L. Wernisch, Maximum k-chains in planar point sets:

combinatorial structure and algorithms, SIAM J. Comp. 28, 1998, pp.

192-209.

[9] T. Gallai and A.N. Milgram, Verallgemeinerung eines

Graphentheoretischen Satzes von Reedei. Acta Sci. Math. Hung.,

21(1960), 429-440.

[10] D.R. Fulkerson, Note on Dilworth’s embedding theorem for partially

ordered sets, Proc. Amer. Math. Soc. 7(1956), 701-702.

[11] J.E. Hopcroft, and R.M. Karp, An n2.5 algorithm for maximum

matching in bipartite graphs, SIAM J. Comput. 2(1973), 225-231.

[12] H.V. Jagadish, "A Compression Technique to Materialize Transitive

Closure," ACM Trans. Database Systems, Vol. 15, No. 4, 1990, pp.

558 - 598.

[13] A.V. Karzanov, Determining the Maximal Flow in a Network by the

Method of Preflow, Soviet Math. Dokl., Vol. 15, 1974, pp. 434-437.

[14] E.L. Lawler, Combinatorial Optimization and Matroids, Holt,

Rinehart, and Winston, New York (1976).

[15] R.-D. Lou, M. Sarrafzadeh, An optimal algorithm for the maximum

two-chain problem, SIAM J. Disc. Math.5(2), 1992, pp. 285-304.

[16] V.M. Malhotra, M.P. Kumar, and S.N. Maheshwari, An O(|V|3)

Algorithm For Finding Maximum Flows in Networks, Computer

Science Program, Indian Institute of Technology, Kanpur 208016,

India, 1978.

[17] M.A. Perles, A proof of Dilworth’s decomposition theorem for partially

ordered sets, Israel J. of Math. 1(1963), 105-107.

[18] H. Tverberg, On Dilworth’s decomposition theorem for partially

ordered sets, J. Comb. Th. 3(1967), 305-306.

[19] D. Coppersmith, and S. Winograd.Matrix multiplication via arithmetic

progression.Journal of Symbolic Computation, vol. 9, pp. 251-280,

1990.

[20] S. Even, Graph Algorithms, Computer Science Press, Inc., Rockville,

Maryland, 1979.

[21] L. Lamport, Time, clocks, and the ordering of events in a distributed

system, Communication of the ACM 21(7), July 1978, 95-114.

[22] H. Goeman, Time and Space Efficient Algorithms for Decomposing

Certain Patially Ordered Sets, PhD thesis, Department of Mathematics-

Science, Rheinischen Friedrich-WilhelmsUniversität Bonn, Germany,

Dec. 1999.

[23] R. Tarjan: Depth-first Search and Linear Graph Algorithms, SIAM J.

Compt. Vol. 1. No. 2.June 1972, pp. 146 -140.

[24] H.S. Warren, “A Modification of Warshall’s Algorithm for the

Transitive Closure of Binary Relations,” Commun. ACM 18, 4 (April

1975), 218 - 220.

130

