
On the Tree Inclusion Problem

Yangjun Chen
1
, Yibin Chen

2

Dept. Applied Computer Science, University of Winnipeg, Canada
1
y.chen@uwinnipeg.ca,

2
chenyibin@gmail.com

Abstract - The ordered tree inclusion is an interesting problem,

by which we will check whether a pattern tree P can be included in a

target tree T, in which the order of siblings is significant. In this

paper, we propose an efficient algorithm for this problem.Its time

complexity is almost linear in the size of T and P. Up to now the best

algorithm for this problem needs quadratic time.

 Keywords: tree inclusion; ordered labeled trees; tree

matching.

1. Introduction

Let T be a rooted tree. We say that T is ordered and

labeled if each node is assigned a symbol from an alphabet

and a left-to-right order among siblings in T is specified.

A tree T consisting of a specially designated node root(T)

= t (called the root of the tree) and a forest <T1, ..., Tk> (where

k 0) is denoted as <t; T1, ..., Tk>. We also call Tj (1 j k) a

direct subtree of t.

The preorder of a forest F= <T1, ...,Tk> is the order of the

nodes visited during a preorder traversal. A preorder traversal

of a forest <T1, ...,Tk> is as follows. Traverse the trees T1, ...,Tk

in ascending order of the indices in preorder. To traverse a tree

in preorder, first visit the root and then traverse the forest of its

subtrees in preorder. The postorder is defined similarly, except

that in a postorder traversal the root is visited after traversing

the forest of its subtrees in postorder. We denote the preorder

and postorder numbers of a node v by pre(v) and post(v),

respectively.

Let u, v be two nodes in T.If there is path from node u to

node v, we say, u is an ancestor of v and v is a descendant of u.

In this paper, by ancestor (descendant), we mean a proper

ancestor (descendant), i.e., u v. Using the preorder and

postorder numbers, the ancestorship can be easily checked:

uis an ancestor of v if and only if pre(u) <pre(v) and post(v)

<post(u). (See Exercise 2.3.2-20 in [5], page 347.)

Similarly,uis said to be to the left of v if they are not

related by the ancestor-descendant relationship and v follows

uwhen we traverse Tin preorder. Then, uis to the left of v if

and only if pre(u) <pre(v) and post(u) <post(v).

In the following, we use  to represent the left-to-right

ordering. Also, v v’ iffv v’ or v = v’. We will also use V(T)

and E(T) to represent the set of nodes and the set of edges in

F, respectively.

The following definition is due to [4].

Definition 1 Let F and G be labeled ordered forests. We

define an ordered embedding (, G, F) as an injective function

: V(G) V(F) such that for all nodes v, u V(G),

i) label(v) = label((v)); (label preservation condition)

ii) v is an ancestor of u iff(v) is an ancestor of (u), i.e.,

pre(v) <pre(u) and post(u) <post(v) iffpre((v))<pre((u))

and post((u))<post((v)); (ancestor condition)

iii) v is to the left of u iff(v) is to the left of (u), i.e., pre(v)

<pre(u) and post(v) <post(u) iffpre((v))<pre((u)) and

post((v)) <post((u)). (Sibling condition)

If there exists such an injective function fromV(G) to V(F),

we say, F includes G, F contains G, F covers G, or say, G can

be embedded in F.

Fig. 1 shows an example of an ordered inclusion.

Throughout the rest of the paper, we refer to the labeled

ordered trees simply as trees.

The ordered tree inclusion problem was initially

introduced by Knuth [5], where only a sufficient condition for

this problem is given. Its first polynomial time algorithm was

presented by Kilpeläinen and Mannila [4] with O(|T|P) time

and space being used. Most of the later improvements are

refinements of this algorithm.

Recently, a break-through is achieved by Bille and Gørtz

[1]. They got a space-economical algorithm with its space

overhead bounded byO(|T| + |P|), but with its time complexity

bounded by

whereDT (resp. DP) is the depth of T (resp. P), and leaves(T)

(resp. leaves(P)) stands for the set of the leaves of T (resp. P).

In [3], a top-down algorithm was first proposed. Its space

requirement is also bounded by O(|T| + P). However, its time

complexity is not polynomial, as shown in [6].

In this paper, we present a new algorithm for this problem.

Its space overhead remainsO(|T|+|P|), but its time complexity is

min

O(|T||leaves(P)|

) O(|leaves(T)||leaves(P)|loglog|leaves(P)| +

|leaves(P)|)
O(|T||P|/(log|T|) +

|T|log|T|)

a

c f

a

d f

e c

b (a)

(b

)

Figure 1: (a) The tree P on the left can be included in the tree T on

the right; (b) an embedding of P in T.

a

c f

a

d f

e c

b

International Conference on Computer, Networks and Communication Engineering (ICCNCE 2013)

© 2013. The authors - Published by Atlantis Press 131

reduced toO(TlogDP).

The tree inclusion problem on unordered trees is NP-

complete [4] and not discussed in this paper.

2. Algorithm

Now we begin to describe our algorithm. First, we

definesome notations in 2.1. Then, in 2.2 and 2.3, we describe

our algorithm in great detail.

2.1 Basic notations

Let T = <t; T1, ...,Tk> (k ) be a tree and G = <P1, ..., Pq>

(q  0) be a forest. We will use pv to represent the virtual

parent of P1, ...,Pq. Then, in G, every node v, excerpt pv, has a

parent, denoted as parent(v).

Consider a node v V(G)  {pv} with children v1, ..., vr.

We use a pair <i, v> (ir) to represent an ordered forest

containing the first isubtrees of v: <G[v1], ..., G[vi]>.

We are interested in a special kind of subtrees, called left

corners, defined below.

Definition 1 (Left corners) A forest <i, v> in G is called a left

corner of G if v = pv orv is a node on the left-most path in P1.

Clearly, if v = pv,<i, v> stands for a left corner of G,

consisting of the first isubtrees in G: P1, ..., Pi.

In the following, we will refer to a left corner of G simply

as a left corner if no confusion will be caused according to the

context.

In addition, we use (G) to represent the left-most leaf

node of G. Then, <i, (G)> (with any i0) or <0, v> (with any

v in G) stands for an empty left corner.

We also use (v) to represent a link from a node v to the

left-most leaf node in G[v], as illustrated in Fig. 2.

Let v’ be a leaf node in G. (v’) is defined to be a link to v’

itself. So in Fig. 4, we have (v1) = (v2) = (v3) = v3. Denote

by -1
(v’) a set of nodes x such that for each v x (v) = v’.

Then, in Fig. 2, We have -1
(v3) = {v1, v2, v3}, -1

(v4) = {v4},

and -1
(v5) = {v5}.

Let p1 be the root of P1. We have (G) = (p1).

The outdegree of v in a tree is denoted by d(v) while the

height of v is denoted by h(v), defined to be the number of

edges on the longest downward path from v to a leaf. The

height of a leaf node is set to be 0.

As with [3], we arrange two functions to check the tree

inclusion. However, in [3], each function returns an integer j,

indicating that the first j subtrees in G can be embedded in a

target tree or a target forest while in our algorithm each

function returns a left corner in G which can be embedded in

the target.

If both the target and the pattern are forests, we call a

function A(<T1, ..., Tk>, <P1, ..., Pq>). If the target is a tree and

the pattern is a forest, we call another function B(T, <P1, ...,

Pq>). But during the computation, they will be called from

each other.

Let <i, v> be a left corner returned by A(<T1, ..., Tk>,

<P1, ..., Pq>) (or by B(T, <P1, ..., Pq>)). Then, the following

properties are satisfied:

 If i> 0 and v ≠ (G), it shows that

- the first isubtrees of v  -1((G)) can be embedded in<T1, ...,

Tk> (or in T).

- for any i’ >i, <i’, v> cannot be embedded in <T1, ..., Tk> (or in

T); and

- for any v’s ancestor u  -1((G)) {pv}, there exists no j > 0

such that <j, u> is able to be embedded in <T1, ..., Tk> (or in T).

 If i= 0 or v = (G), it indicates that no left corner of G can

be embedded in <T1, ..., Tk> (or in T).

In this sense, we say, <i, v> is the highest and widest left

corner which can be embedded in <T1, ...,Tk> (or in T).

We notice that if v = pv and i> 0, it shows that P1, ...,Pi can be

included in <T1, ..., Tk> (or in T).

Finally, we say,a left corner <i, v> is higher than a node

u(or another left corner <j, u>)ifv is an ancestor of u.

2.2 A-function

First, let’s have a look at a naïve way to evaluateA(F, G),

where F = <T1, ..., Tk> and G = <P1, ..., Pq>.

1. Two index variables j, l are used to scan T1, ...,Tk and

P1, ..., Pq, respectively. Initially, j is set to 1, and l is set to

0. (They also indicate that <P1, ...,Pl> has been successfully

embedded in <T1, ..., Tj>.) In each step, we call B(Tj,

<Pl+1, ..., Pq>).

2. Let <ij, vj>be the return value of B(Tj, <Pl+1, ..., Pq>).If vj =

parent(p1), set lto be l+ ij. Otherwise, lis not changed. Set

jto be j+ 1. Go to (2).

3. The loop terminates when all Tj’s or all Pl’s are examined.

If l> 0 when the loop terminates, B(T, G) returns <l,

parent(p1)>, indicating that F contains P1, ..., Pl.

Otherwise, l = 0, indicating that even P1 alone cannot be

embedded in any Tj (jk}). However, in this case, we

need to continue to look for a highest and widest left corner <i,

v> in G, which can be embedded in G. This is done as

described below.

4. Let <i1, v1>, ...,<ik, vk> be the return values of B(T1, <P1, ...,

Pq>), ..., B(Tk, <P1, ..., Pq>), respectively. Since j = 0, each

vj
-1

(v’) (j= 1, ...,k), where v’ is the left-most leaf in P1.

5. If each ij = 0, return <0, (G)>. Otherwise, there must be

some vj’s such that ij> 0. We call such a node a non-zero

point. Find the first non-zero point vf with children

w1, ...,wy such that vf is not a descendant of any other non-

zero point. Then, we will check <Tf+1, ...,Tk>

againstG[],..., G[wy]>. Let x (0 x y - if) be a

number such that <G[],..., G[wx]> can be embedded

v3

v1

v2 v5

v4

P: (v1)

(v2)

Figure 2. A pattern tree

132

in <Tf+1, ..., Tk>. Thereturn value of A(F, G) should be set

to <if+ x, vf>.

In the above process, (1) - (3) are referred to as a main

checking while (4) – (5) as a supplement checking.

We notice that in the supplement checking, only the first

non-zero is utilized for forming the final result while all the

other calls of the formB(Tj, <P1, ..., Pq>) (done in the main

checking) are not usedat all. Their efforts for looking for the

corresponding return values bring the void, and therefore

should be avoided.
For this purpose, we introduce the concept of cuts to integrate a

kind of control into the above working process.

Definition 2 A cut for a call of the form A(F, G) is a node u(≠

pv) 
-1

((G)), indicating that if the supplement checking in

A(F, G) can only bring out a left corner <i, v> not higher than

u, the corresponding computation makes no contribution to the

final result.

The following example helps for illustration.

Example 1 Consider target forest Fand pattern forest G shown

in Figure 3, in which each node inF is identified with ti, such

as t1, t2, t11, and so on; and each node in G is identified with pj.

Besides, each subtree rooted at ti (resp. pj) is represented by Ti

(resp. Pj).

Initially, forA(<T1, T2>, <P1, P2>), we will set its cutu0 to

be (G) = p111, imposing in fact no control on its supplement

checking at all.When executing B(T1, <P1, P2>), its cut u1 isset

to be the same as u0(i.e., u1 = u0).

It can be seen that T1 is able to include only G[p11]. So the

return value of this call should be <1, p1>. Then, for B(T2, <P1,

P2>), the cut u2should be set top1, indicating that the

supplement checking within B(T2, <P1, P2>) should be cut off

if it can only produce a left corner not higher than p1 since the

result will not be used.
As will be seen later, during the execution of B(T2, <P1,

P2>), A(<T21, T22>, <P1, P2>) will be called and the cut u21 for

this call is the same asu2= p1. Then, after the main checking

ofA(<T21, T22>, <P1, P2>), its supplement checking will be

discarded since in its main checking the return values ofB(T21,

<P1, P2>) and B(T21, <P1, P2>) are<1, p1> and <0, (G)>,

respectively; and the supplement checking will not create a left

corner higher p1. 

With the cutsbeing considered, the A-function should be

changed to take three inputs: F=<T1, ...,Tk>, G= <P1, ..., Pq>,

and u-1
(p1). (Initially, u is set to (G).) In the main checking

of A(F, G, u), the cut for each B-function call will be

dynamically changed as described below.

i) At the very beginning, we will check whether u is higher

thanp1, where p1 is the root of P1. If it is the case, we

simply return <0, (G)> since the computation will not

make any contribution to the final result. Otherwise, we

will do the following.

ii) For the first B-function call B(T1, < , ..., Pq>, u1) (where

l1= 1), set u1= u. Let <i1, v1> be its return value. We will

call B(T2, , < , ..., Pq>, u2) in a next step. If v1 =

parent(p1), l2= i1 + 1) and u2 is set to be . If

v1 parent(p1), l2= l1= 1, and u2 is set to be v1.

iii) In general, let <ij, vj> be the return value of B(Tj, < , ...,

Pq>, uj) for j= 1, ..., x k, j1 = 1, j1j2  ... jxq. Let s

be an integer such that l1 = ... =ls= 1, butls+1> 1. Then, for

2 js, we have

 and for s + 1jx, we have

 uj = . (2.2)

The formula (2.1) shows how the cuts are changed before

we find the first Tswhich is able to embed some subtrees in G.

After Ts, the cuts are determined in terms of the formula (2.2).

Setting uj to be will effectively prohibit the supplement

checking in the execution of B(Tj, < , ..., Pq>, uj), which will

definitely returna left corner not higher than and therefore

is useless.

After the main checking, the following checks will be

conducted to determine whether a supplement checking will be

carried out.

 If l = q, we will record the embedding.

 Ifj <k, we will continue to find a next embedding by

making a recursive call A(<Tj+1, ..., Tk>, <P1, ..., Pq>, p1).

 If there is at least an embedding, return <q, pv>.

 If 0<l <q, return <l, pv>.

 Ifl = 0 andf =0, return <0,(p1)>.

 Otherwise, a supplement checking will be conducted.

Let <if, vf>be the return valueof some B(Tj, < , ..., Pq>,

uj) such that vf is not a descendant of any other non-zero point.

We will make a recursive callA(<Tf+1, ..., Tk>,

<G[], ...,G[wy]>,) for doing a supplement

checking, where w1, ..., wy are the children of vf. We notice that

the cut for this recursive call is set to be to cut off a

possible supplement checking in this execution.

In terms of the above discussion, we give the following

algorithm.

functionA(F, G, u) (*Initially, u = (G).*)

input: F = <T1, ..., Tk>, G = <P1, ..., Pq>, u – a cut.

uj=

vj-1,

uj-1,

ifvj-1 is higher thanuj-1 and ij-1> 0;

ifvj-1 is not higher thanuj-1 or ij-1 = 0;

(2.1

)

F = <T1, T2>:

Figure 3. A target and a pattern forest

.

t12 t11

f

b

e

t1

t111

c

t22 t21

b

b

d

t2

t211

c

t212

e

G = <P1, P2>:

e

p11

p111 p112

b

c

p2

p21

b

c

p1

a

t221

d

133

output: <i, v> specified above.

begin

1. ifp1 is a descendant of u then return <0, (p1)>;

2. j:= 1; l := 0; v := u; f := 0;i := 0;

3. while (l <q and j k) do (*main checking*)

4. { <ij, vj> := B(Tj, <Pl+1, ..., Pq>, v)

5. if (vj = pv) then {l := l + ij; v := pl+1;}

6. else if (vj is an ancestor of v and ij> 0)

 then {v := vj; i:= ij; f := j;}

7. j:= j+ 1;

8. }

9. ifl = qthen record the embedding;

10. ifj <k then {<i’’, v’’> := A(<Tj+1, ..., Tk>, G, p1);}

11. ifthere is at least an embedding then return <q, pv>;

12. ifl > 0 then return <l, pv>;

13. iff = 0 then return <0, (p1)>;

14. letw1, ..., wsbe the children of v;

15. j:= f + 1; (*supplement checking*)

16. <i’, v’> := A(<Tj+1, ..., Tk>, <G[wi+1], ..., G[ws]>, wi+1);

17. if (v’ = vandi’ > 0) then return <i+ i’, v>;

end

2.3 B-function

In B(T, G, u), we need to distinguish between two cases.

Case 1: G = <P1>; or

 G = <P1, ...,Pq> (q >), but |T|  |P1| + |P2|.

In this case, what we can do is to find whether P1 or a left

corner in P1 can be embedded in T = <t; T1, ...,Tk>. For this

purpose, the following checkings should be conducted:

i) If t is a leaf node, we will check whether label(t) =

label((p1)), where p1 is the root of P1. If it is the case,

return <1, parent of (p1)>. Otherwise, return <0, (p1)>.

ii) If |T| > 1, but |T| |P1| or h(t) < h(p1), we will make a

recursive call B(T, <P11, ..., P1j>, u), where <P11, ..., P1j> is

a forest of the subtrees of p1. The return value of B(T,

<P11, ..., P1j>, u) is used as the return value of B(T, G, u). It

is because in this case, T is not able to include the whole

P1. So what we can do is to checkT against <P11, ...,P1j>.

iii) If |T| |P1| and h(t)  h(p1) (but |T|  |P1| + |P2|), we further

distinguish between two sub-cases:

 label(t) = label(p1). In this case, we will call A(<T1, ...,

Tk>, <P11, ..., P1j>, p11) or A(<T1, ..., Tk>, <P11, ..., P1j>,

u), depending on whether u = p1. If u = p1,the cut for this

call is set to be p11 because if the left corner returned by

this call is not higher than p11, it will not be used.

 label(t)  label(p1). In this case, we will call A(<T1, ...,

Tk>, <P1>).

In both cases, assume that the return value of A() is <i,

v>. We need to do an extra checking:

- If label(t) = label(v) and i = d(v), the return value of B(T,

G, u) is set to be <1, v’s parent>.

- Otherwise, the return value of B(T, G, u) is the same as

<i, v>.

Case 2: G = <P1, ...,Pq> (q >), and |T| > |P1| + |P2|.

In this case, we will call A(<T1, ..., Tk>, G, u). Assume that

the return value of A(<T1, ..., Tk>, G, u) is <i, v>. The

following checkings will be continually conducted.

iv) If v p1’s parent, check whether label(t) = label(v) and i =

d(v). If it is not the case, the return value of B(T, G, u) is

the same as <i, v>. Otherwise, the return value of B(T, G,

u) will be set to <1, v’s parent>.

v) If v =p1’s parent, the return value of B(T, G, u) is the same

as <i, v>.

In terms of the above discussion, we give thefollowing

formal description of the algorithm, in which B’() is used to

handle Case 1 and B’’() for case 2.

functionB(T, G, u) (*Initially, u = (G).*)

input: T = <t; T1, ..., Tk>, G = <P1, ..., Pq>, u – cut.

output: <i, v> specified above.

begin
1. if p1 is a descendant of u then return <0, (p1)>;

2. if (q = 1 or |T|  |P1| + |P2|)thenreturn B’(T, P1, u)

3. else return B’’(T, G, u);

end

functionB’(T, P, u) (*Case 1*)

begin

1. letT = <t; T1, ..., Tk>; letP = <p; P1, ..., Pj>;

2. ift is a leaf then (*Case 1 - (i)*)

3. { let(p) = v;

4. iflabel(t) = label(v) then return <1, v’s parent>

5. elsereturn <0, v>;

 6. }

7. if(|T| |P| h(t) < h(p)) then return B(T, <P1, ..., Pj>, u);

 (*Case 1 - (ii)*)

8. if label(t) = label(p) (*Case 1- (iii)*)

9. then {

 if p is a leaf then {v := p’s parent; i := 1;}

10. else { ifu= p

 then<i, v>:= A(<T1, ..., Tk>, <P1, ..., Pj>, p1)

11. else<i, v>:= A(<T1, ..., Tk>, <P1, ..., Pj>, u);

12. if label(t) = label(v) and i= d(v)

13. then {v := v’s parent; i := 1; }

14. }

15. }

16. else<i, v> := A(<T1, ..., Tk>, <P>, u);

 (*If label(t)  label(p), call A().*)

17. return<i, v>;

18. }

end

functionB’’(T, G, u) (*Case 2*)

begin

1. letT = <t; T1, ..., Tk>;

2. <i, v> := A(<T1, ..., Tk>, G, u);

3. ifv pv (*Case 2 - (iv)*)

5. then{ if (label(t) = label(v)) i = d(v)

6. thenreturn <1, v’s parent>;

134

7. }

8. return<i, v>; (*Case 2 - (v)*)

end

This algorithm is for Case 2. Again, the cut for the B-

function isdirectly propagated to the subfunction calls of A()

(see line 2.)

3. Conclusion

In this paper, a new algorithm is proposed to solve the

ordered tree inclusion problem. Up to now, the best algorithm

for this problem needs quadratic time. However, ours requires

only O(|T|logDP) time and O(|T| + |P|) space, where T and P

are a target and a pattern tree (forest), respectively; and DP is

the depth of P.

4. References

[1] P. Bille and I.L. Gørtz, The Tree Inclusion Problem: In Linear Space and

Faster, ACM Transaction on Algorithms, Vol. 7, No. 3, Article 38, July

2011, pp. 38:1-38:47.

[2] W. Chen. More efficient algorithm for ordered tree inclusion.Journal of

Algorithms, 26:370-385, 1998.

[3] Y. Chen and Y.B. Chen, A New Tree Inclusion Algorithm, Information

Processing Letters 98(2006) 253-262, Elsevier Science B.V.

[4] P. Kilpeläinen and H. Mannila. Ordered and unordered tree inclusion.

SIAM J. Comput, 24:340-356, 1995.

[5] D.E. Knuth, The Art of Computer Programming, Vol. 1 (1st edition),

Addison-Wesley, Reading, MA, 1969.

[6] H.L Cheng and B.F Wang, On Chen and Chen's new tree inclusion

algorithm, Information Processing Letters, 2007, Vol. 103, 14-18,

Elsevier Science B.V.

135

