
On the Tree Inclusion Problem 

Yangjun Chen
1
, Yibin Chen

2
 

Dept. Applied Computer Science, University of Winnipeg, Canada 
1
y.chen@uwinnipeg.ca, 

2
chenyibin@gmail.com 

Abstract - The ordered tree inclusion is an interesting problem, 

by which we will check whether a pattern tree P can be included in a 

target tree T, in which the order of siblings is significant. In this 

paper, we propose an efficient algorithm for this problem.Its time 

complexity is almost linear in the size of T and P.  Up to now the best 

algorithm for this problem needs quadratic time.   

    Keywords: tree inclusion; ordered labeled trees; tree 

matching. 

1. Introduction 

Let T be a rooted tree. We say that T is ordered and 

labeled if each node is assigned a symbol from an alphabet 

and a left-to-right order among siblings in T is specified.  

A tree T consisting of a specially designated node root(T) 

= t (called the root of the tree) and a forest <T1, ..., Tk> (where 

k 0) is denoted as <t; T1, ..., Tk>. We also call Tj (1 j k) a 

direct subtree of t. 

The preorder of a forest F= <T1, ...,Tk> is the order of the 

nodes visited during a preorder traversal. A preorder traversal 

of a forest <T1, ...,Tk> is as follows. Traverse the trees T1, ...,Tk 

in ascending order of the indices in preorder. To traverse a tree 

in preorder, first visit the root and then traverse the forest of its 

subtrees in preorder. The postorder is defined similarly, except 

that in a postorder traversal the root is visited after traversing 

the forest of its subtrees in postorder. We denote the preorder 

and postorder numbers of a node v by pre(v) and post(v), 

respectively. 

Let u, v be two nodes in T.If there is path from node u to 

node v, we say, u is an ancestor of v and v is a descendant of u. 

In this paper, by ancestor (descendant), we mean a proper 

ancestor (descendant), i.e., u v. Using the preorder and 

postorder numbers, the ancestorship can be easily checked: 

uis an ancestor of v if and only if pre(u) <pre(v) and post(v) 

<post(u). (See Exercise 2.3.2-20 in [5], page 347.) 

Similarly,uis said to be to the left of v if they are not 

related by the ancestor-descendant relationship and v follows 

uwhen we traverse Tin preorder. Then, uis to the left of v if 

and only if pre(u) <pre(v) and post(u) <post(v). 

In the following, we use  to represent the left-to-right 

ordering. Also, v v’ iffv v’ or v = v’. We will also use V(T) 

and E(T) to represent the set of nodes and the set of edges in 

F, respectively. 

The following definition is due to [4]. 

Definition 1 Let F and G be labeled ordered forests. We 

define an ordered embedding (, G, F) as an injective function 

: V(G) V(F) such that for all nodes v, u V(G), 

i) label(v) = label((v)); (label preservation condition) 

ii) v is an ancestor of u iff(v) is an ancestor of (u), i.e., 

pre(v) <pre(u) and post(u) <post(v) iffpre((v))<pre((u)) 

and post((u))<post((v)); (ancestor condition) 

iii) v is to the left of u iff(v) is to the left of (u), i.e., pre(v) 

<pre(u) and post(v) <post(u) iffpre((v))<pre((u)) and 

post((v)) <post((u)). (Sibling condition)  

If there exists such an injective function fromV(G) to V(F), 

we say, F includes G, F contains G, F covers G, or say, G can 

be embedded in F. 

Fig. 1 shows an example of an ordered inclusion. 

 

Throughout the rest of the paper, we refer to the labeled 

ordered trees simply as trees. 

The ordered tree inclusion problem was initially 

introduced by Knuth [5], where only a sufficient condition for 

this problem is given. Its first polynomial time algorithm was 

presented by Kilpeläinen and Mannila [4] with O(|T|P) time 

and space being used. Most of the later improvements are 

refinements of this algorithm.  

Recently, a break-through is achieved by Bille and Gørtz 

[1]. They got a space-economical algorithm with its space 

overhead bounded byO(|T| + |P|), but with its time complexity 

bounded by 

 
whereDT (resp. DP) is the depth of T (resp. P), and leaves(T) 

(resp. leaves(P)) stands for the set of the leaves of T (resp. P). 

In [3], a top-down algorithm was first proposed. Its space 

requirement is also bounded by O(|T| + P). However, its time 

complexity is not polynomial, as shown in [6]. 

In this paper, we present a new algorithm for this problem. 

Its space overhead remainsO(|T|+|P|), but its time complexity is 

min 

O(|T||leaves(P)|

) O(|leaves(T)||leaves(P)|loglog|leaves(P)| + 

|leaves(P)|) 
O(|T||P|/(log|T|) + 

|T|log|T|) 
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Figure 1: (a) The tree P on the left can be included in the tree T on 

the right; (b) an embedding of P in T. 
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reduced toO(TlogDP). 

The tree inclusion problem on unordered trees is NP-

complete [4] and not discussed in this paper. 

2. Algorithm 

Now we begin to describe our algorithm. First, we 

definesome notations in 2.1. Then, in 2.2 and 2.3, we describe 

our algorithm in great detail. 

2.1 Basic notations 

Let T = <t; T1, ...,Tk> (k ) be a tree and G = <P1, ..., Pq> 

(q  0) be a forest. We will use pv to represent the virtual 

parent of P1, ...,Pq. Then, in G, every node v, excerpt pv, has a 

parent, denoted as parent(v). 

Consider a node v V(G)  {pv} with children v1, ..., vr. 

We use a pair <i, v> (ir) to represent an ordered forest 

containing the first isubtrees of v: <G[v1], ..., G[vi]>.  

We are interested in a special kind of subtrees, called left 

corners, defined below. 

Definition 1 (Left corners) A forest <i, v> in G is called a left 

corner of G if v = pv orv is a node on the left-most path in P1.  

Clearly, if v = pv,<i, v> stands for a left corner of G, 

consisting of the first isubtrees in G: P1, ..., Pi.  

In the following, we will refer to a left corner of G simply 

as a left corner if no confusion will be caused according to the 

context. 

In addition, we use (G) to represent the left-most leaf 

node of G. Then, <i, (G)> (with any i0) or <0, v> (with any 

v in G) stands for an empty left corner. 

We also use (v) to represent a link from a node v to the 

left-most leaf node in G[v], as illustrated in Fig. 2. 

Let v’ be a leaf node in G. (v’) is defined to be a link to v’ 

itself. So in Fig. 4, we have (v1) = (v2) = (v3) = v3. Denote 

by -1
(v’) a set of nodes x such that for each v x (v) = v’. 

Then, in Fig. 2, We have -1
(v3) = {v1, v2, v3}, -1

(v4) = {v4}, 

and -1
(v5) = {v5}. 

 

Let p1 be the root of P1. We have (G) = (p1). 

The outdegree of v in a tree is denoted by d(v) while the 

height of v is denoted by h(v), defined to be the number of 

edges on the longest downward path from v to a leaf. The 

height of a leaf node is set to be 0.  

As with [3], we arrange two functions to check the tree 

inclusion. However, in [3], each function returns an integer j, 

indicating that the first j subtrees in G can be embedded in a 

target tree or a target forest while in our algorithm each 

function returns a left corner in G which can be embedded in 

the target. 

If both the target and the pattern are forests, we call a 

function A(<T1, ..., Tk>, <P1, ..., Pq>). If the target is a tree and 

the pattern is a forest, we call another function B(T, <P1, ..., 

Pq>). But during the computation, they will be called from 

each other. 

Let <i, v> be a left corner returned by A(<T1, ..., Tk>, 

<P1, ..., Pq>) (or by B(T, <P1, ..., Pq>)). Then, the following 

properties are satisfied: 

 If i> 0 and v ≠ (G), it shows that 

- the first isubtrees of v  -1((G)) can be embedded in<T1, ..., 

Tk> (or in T). 

- for any i’ >i, <i’, v> cannot be embedded in <T1, ..., Tk> (or in 

T); and 

- for any v’s ancestor u  -1((G)) {pv}, there exists no j > 0 

such that <j, u> is able to be embedded in <T1, ..., Tk> (or in T). 

 If i= 0 or v = (G), it indicates that no left corner of G can 

be embedded in <T1, ..., Tk> (or in T). 

In this sense, we say, <i, v> is the highest and widest left 

corner which can be embedded in <T1, ...,Tk> (or in T). 

We notice that if v = pv and i> 0, it shows that P1, ...,Pi can be 

included in <T1, ..., Tk> (or in T). 

Finally, we say,a left corner <i, v> is higher than a node 

u(or another left corner <j, u>)ifv is an ancestor of u. 

2.2 A-function 

First, let’s have a look at a naïve way to evaluateA(F, G), 

where F = <T1, ..., Tk> and G = <P1, ..., Pq>. 

1. Two index variables j, l are used to scan T1, ...,Tk and 

P1, ..., Pq, respectively. Initially, j is set to 1, and l is set to 

0. (They also indicate that <P1, ...,Pl> has been successfully 

embedded in <T1, ..., Tj>.) In each step, we call B(Tj, 

<Pl+1, ..., Pq>). 

2. Let <ij, vj>be the return value of B(Tj, <Pl+1, ..., Pq>).If vj = 

parent(p1), set lto be l+ ij. Otherwise, lis not changed. Set 

jto be j+ 1. Go to (2). 

3. The loop terminates when all Tj’s or all Pl’s are examined. 

If l> 0 when the loop terminates, B(T, G) returns <l, 

parent(p1)>, indicating that F contains P1, ..., Pl. 

Otherwise, l = 0, indicating that even P1 alone cannot be 

embedded in any Tj (jk}). However, in this case, we 

need to continue to look for a highest and widest left corner <i, 

v> in G, which can be embedded in G. This is done as 

described below. 

4. Let <i1, v1>, ...,<ik, vk> be the return values of B(T1, <P1, ..., 

Pq>), ..., B(Tk, <P1, ..., Pq>), respectively. Since j = 0, each 

vj
-1

(v’) (j= 1, ...,k), where v’ is the left-most leaf in P1. 

5. If each ij = 0, return <0, (G)>. Otherwise, there must be 

some vj’s such that ij> 0. We call such a node a non-zero 

point. Find the first non-zero point vf with children 

w1, ...,wy such that vf is not a descendant of any other non-

zero point. Then, we will check <Tf+1, ...,Tk> 

againstG[ ],..., G[wy]>. Let x (0 x y - if) be a 

number such that <G[ ],..., G[wx]> can be embedded 

v3 

v1 

v2 v5 

v4 

P: (v1) 

(v2) 

Figure 2. A pattern tree 
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in <Tf+1, ..., Tk>. Thereturn value of A(F, G) should be set 

to <if+ x, vf>.  

In the above process, (1) -  (3) are referred to as a main 

checking while (4) – (5) as a supplement checking. 

We notice that in the supplement checking, only the first 

non-zero is utilized for forming the final result while all the 

other calls of the formB(Tj, <P1, ..., Pq>) (done in the main 

checking) are not usedat all. Their efforts for looking for the 

corresponding return values bring the void, and therefore 

should be avoided. 
For this purpose, we introduce the concept of cuts to integrate a 

kind of control into the above working process. 

Definition 2 A cut for a call of the form A(F, G) is a node u(≠ 

pv) 
-1

((G)), indicating that if the supplement checking in 

A(F, G) can only bring out a left corner <i, v> not higher than 

u, the corresponding computation makes no contribution to the 

final result.  

The following example helps for illustration. 

Example 1 Consider target forest Fand pattern forest G shown 

in Figure 3, in which each node inF is identified with ti, such 

as t1, t2, t11, and so on; and each node in G is identified with pj. 

Besides, each subtree rooted at ti (resp. pj) is represented by Ti 

(resp. Pj). 

 

Initially, forA(<T1, T2>, <P1, P2>), we will set its cutu0 to 

be (G) = p111, imposing in fact no control on its supplement 

checking at all.When executing B(T1, <P1, P2>), its cut u1 isset 

to be the same as u0(i.e., u1 = u0). 

It can be seen that T1 is able to include only G[p11]. So the 

return value of this call should be <1, p1>. Then, for B(T2, <P1, 

P2>), the cut u2should be set top1, indicating that the 

supplement checking within B(T2, <P1, P2>) should be cut off 

if it can only produce a left corner not higher than p1 since the 

result will not be used. 
As will be seen later, during the execution of B(T2, <P1, 

P2>), A(<T21, T22>, <P1, P2>) will be called and the cut u21 for 

this call is the same asu2= p1. Then, after the main checking 

ofA(<T21, T22>, <P1, P2>), its supplement checking will be 

discarded since in its main checking the return values ofB(T21, 

<P1, P2>) and B(T21, <P1, P2>) are<1, p1> and <0, (G)>, 

respectively; and the supplement checking will not create a left 

corner higher p1.  

With the cutsbeing considered, the A-function should be 

changed to take three inputs: F=<T1, ...,Tk>, G= <P1, ..., Pq>, 

and u-1
(p1). (Initially, u is set to (G).) In the main checking 

of A(F, G, u), the cut for each B-function call will be 

dynamically changed as described below. 

i) At the very beginning, we will check whether u is higher 

thanp1, where p1 is the root of P1. If it is the case, we 

simply return <0, (G)> since the computation will not 

make any contribution to the final result. Otherwise, we 

will do the following. 

ii) For the first B-function call B(T1, < , ..., Pq>, u1) (where 

l1= 1), set u1= u. Let <i1, v1> be its return value. We will 

call B(T2, , < , ..., Pq>, u2) in a next step. If v1 = 

parent(p1), l2= i1 + 1) and u2 is set to be . If 

v1 parent(p1), l2= l1= 1, and u2 is set to be v1. 

iii) In general, let <ij, vj> be the return value of B(Tj, < , ..., 

Pq>, uj) for j= 1, ..., x k, j1 = 1, j1j2  ... jxq. Let s 

be an integer such that l1 =  ... =ls= 1, butls+1> 1. Then, for 

2 js, we have 

 
 and for s + 1jx, we have 

 uj = .    (2.2) 

The formula (2.1) shows how the cuts are changed before 

we find the first Tswhich is able to embed some subtrees in G. 

After Ts, the cuts are determined in terms of the formula (2.2). 

Setting uj to be  will effectively prohibit the supplement 

checking in the execution of B(Tj, < , ..., Pq>, uj), which will 

definitely returna left corner not higher than  and therefore 

is useless. 

After the main checking, the following checks will be 

conducted to determine whether a supplement checking will be 

carried out. 

 If l = q, we will record the embedding. 

 Ifj <k, we will continue to find a next embedding by 

making a recursive call A(<Tj+1, ..., Tk>, <P1, ..., Pq>, p1). 

 If there is at least an embedding, return <q, pv>. 

 If 0<l <q, return <l, pv>.  

 Ifl = 0 andf =0, return <0,(p1)>. 

 Otherwise, a supplement checking will be conducted. 

Let <if, vf>be the return valueof some B(Tj, < , ..., Pq>, 

uj) such that vf is not a descendant of any other non-zero point. 

We will make a recursive callA(<Tf+1, ..., Tk>, 

<G[ ], ...,G[wy]>, ) for doing a supplement 

checking, where w1, ..., wy are the children of vf. We notice that 

the cut for this recursive call is set to be to cut off a 

possible supplement checking in this execution. 

In terms of the above discussion, we give the following 

algorithm. 

functionA(F, G, u) (*Initially, u = (G).*) 

input: F = <T1, ..., Tk>, G = <P1, ..., Pq>, u – a cut. 

uj=  

vj-1, 

uj-1, 

ifvj-1 is higher thanuj-1 and ij-1> 0;  

ifvj-1 is not higher thanuj-1 or ij-1 = 0; 

(2.1

) 

F = <T1, T2>: 

Figure 3. A target and a pattern forest 
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output: <i, v> specified above. 

begin 

1. ifp1 is a descendant of u then return <0, (p1)>; 

2. j:= 1; l := 0; v := u; f := 0;i := 0;   

3. while (l <q and j k) do (*main checking*) 

4. { <ij, vj> := B(Tj, <Pl+1, ..., Pq>, v) 

5.  if (vj = pv) then {l := l + ij; v := pl+1;} 

6.  else if (vj is an ancestor of v and ij> 0) 

   then {v := vj; i:= ij; f := j;} 

7.  j:= j+ 1; 

8. } 

9. ifl = qthen record the embedding; 

10. ifj <k then {<i’’, v’’> := A(<Tj+1, ..., Tk>, G, p1);} 

11. ifthere is at least an embedding then return <q, pv>; 

12. ifl > 0 then return <l, pv>; 

13. iff  = 0 then return <0, (p1)>; 

14. letw1, ..., wsbe the children of v;  

15. j:= f + 1; (*supplement checking*) 

16. <i’, v’> := A(<Tj+1, ..., Tk>, <G[wi+1], ..., G[ws]>, wi+1); 

17. if (v’ = vandi’ > 0) then return <i+ i’, v>; 

end 

2.3 B-function 

In B(T, G, u), we need to distinguish between two cases. 

Case 1: G = <P1>; or 

 G = <P1, ...,Pq> (q >), but |T|  |P1| + |P2|. 

In this case, what we can do is to find whether P1 or a left 

corner in P1 can be embedded in T = <t; T1, ...,Tk>. For this 

purpose, the following checkings should be conducted: 

i) If t is a leaf node, we will check whether label(t) = 

label((p1)), where p1 is the root of P1. If it is the case, 

return <1, parent of (p1)>. Otherwise, return <0, (p1)>. 

ii) If |T| > 1, but |T| |P1| or h(t) < h(p1), we will make a 

recursive call B(T, <P11, ..., P1j>, u), where <P11, ..., P1j> is 

a forest of the subtrees of p1. The return value of B(T, 

<P11, ..., P1j>, u) is used as the return value of B(T, G, u). It 

is because in this case, T is not able to include the whole 

P1. So what we can do is to checkT against <P11, ...,P1j>.  

iii) If |T| |P1| and h(t)  h(p1) (but |T|  |P1| + |P2|), we further 

distinguish between two sub-cases: 

 label(t) = label(p1). In this case, we will call A(<T1, ..., 

Tk>, <P11, ..., P1j>, p11) or A(<T1, ..., Tk>, <P11, ..., P1j>, 

u), depending on whether u = p1. If u = p1,the cut for this 

call is set to be p11 because if the left corner returned by 

this call is not higher than p11, it will not be used. 

 label(t)  label(p1). In this case, we will call A(<T1, ..., 

Tk>, <P1>). 

In both cases, assume that the return value of A( ) is <i, 

v>. We need to do an extra checking: 

- If label(t) = label(v) and i = d(v), the return value of B(T, 

G, u) is set to be <1, v’s parent>. 

- Otherwise, the return value of B(T, G, u) is the same as 

<i, v>. 

Case 2: G = <P1, ...,Pq> (q >), and |T| > |P1| + |P2|. 

In this case, we will call A(<T1, ..., Tk>, G, u). Assume that 

the return value of A(<T1, ..., Tk>, G, u) is <i, v>. The 

following checkings will be continually conducted. 

iv) If v p1’s parent, check whether label(t) = label(v) and i = 

d(v). If it is not the case, the return value of B(T, G, u) is 

the same as <i, v>. Otherwise, the return value of B(T, G, 

u) will be set to <1, v’s parent>. 

v) If v =p1’s parent, the return value of B(T, G, u) is the same 

as <i, v>. 

In terms of the above discussion, we give thefollowing 

formal description of the algorithm, in which B’( ) is used to 

handle Case 1 and B’’( ) for case 2. 

functionB(T, G, u) (*Initially, u = (G).*) 

input: T = <t; T1, ..., Tk>, G = <P1, ..., Pq>, u – cut. 

output: <i, v> specified above. 

begin 
1. if p1 is a descendant of u then return <0, (p1)>; 

2. if (q = 1 or |T|  |P1| + |P2|)thenreturn B’(T, P1, u) 

3.  else return B’’(T, G, u); 

end 

functionB’(T, P, u) (*Case 1*) 

begin 

1. letT = <t; T1, ..., Tk>; letP = <p; P1, ..., Pj>;   

2. ift is a leaf then (*Case 1 - (i)*) 

3. { let(p) = v; 

4. iflabel(t) = label(v) then return <1, v’s parent> 

5.  elsereturn <0, v>; 

 6. } 

7. if(|T| |P| h(t) < h(p)) then return B(T, <P1, ..., Pj>, u);  

 (*Case 1 - (ii)*) 

8. if label(t) = label(p) (*Case 1- (iii)*) 

9. then {

 if p is a leaf then {v := p’s parent; i := 1;} 

10. else { ifu= p 

  then<i, v>:= A(<T1, ..., Tk>, <P1, ..., Pj>, p1) 

11.  else<i, v>:= A(<T1, ..., Tk>, <P1, ..., Pj>, u); 

12.           if label(t) = label(v) and i= d(v) 

13.           then {v := v’s parent; i := 1; } 

14.        } 

15. } 

16. else<i, v> := A(<T1, ..., Tk>, <P>, u);  

 (*If label(t)  label(p), call A( ).*) 

17. return<i, v>; 

18. } 

end 

functionB’’(T, G, u) (*Case 2*) 

begin 

1. letT = <t; T1, ..., Tk>; 

2. <i, v> := A(<T1, ..., Tk>, G, u); 

3. ifv pv  (*Case 2 - (iv)*) 

5. then{ if (label(t) = label(v)) i = d(v) 

6. thenreturn <1, v’s parent>; 
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7. } 

8. return<i, v>; (*Case 2 - (v)*) 

end 

This algorithm is for Case 2. Again, the cut for the B-

function isdirectly propagated to the subfunction calls of A( ) 

(see line 2.) 

3.  Conclusion 

In this paper, a new algorithm is proposed to solve the 

ordered tree inclusion problem. Up to now, the best algorithm 

for this problem needs quadratic time. However, ours requires 

only O(|T|logDP) time and O(|T| + |P|) space, where T and P 

are a target and a pattern tree (forest), respectively; and DP is 

the depth of P. 
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