
Branch Obfuscation Using Binary Code Side Effects∗

Hong Lin1, Xiaohua Zhang1, Ma Yong2, Baohui Wang3

1Network and Information Center North China Electric Power University Beijing, China
2College of Information Technical Science, Nankai University, Tianjin 300071, China

3Software College Beihang University, Beijing, China
{linh& zh_sober}@ncepu.edu.cn, mayong@mail.nankai.edu.cn, wangbh@buaa.edu.cn

∗ Supported by National Science and Technology Support Program “Key Technology Research and Demonstration for the Enhanced Search Engine”, Project No. 2011BAH11B01

 Abstract - The path constraints are leaked by binary conditional
jump instructions which are the binary representation of software’s
internal logic. Based on the problem of software’s path constraints
leaking, reverse engineering using path-sensitive techniques such as
symbolic execution and theorem proving poses a new threat to
software intellectual property protection. In order to mitigate path
information leaking problem, this paper proposed a novel branch
obfuscation scheme that uses binary code side effects to hide path
constraints and takes advantage of remote trusted entity to protect
software’s control flow graph, without changing software’s
functionality. The experimental results show that this branch
obfuscation technique could effectively protect software’s path
constraints against state-of-the-art reverse engineering, yet practical
in terms of performance.
 Index Terms - code obfuscation, binary code side effects,
exception handling, symbolic execution, trusted entity

1. Introduction

At run time, binary conditional jump instructions disclose
software’s path information. Researchers could easily collect
path constraints from software’s execution trace using concolic
execution technique and accurately reason about software’s
internal logic.

This reverse engineering method based on the software’s
path information leaking problem has been widely applied in
security analysis, such as software testing, vulnerability
discovering, malicious code analysis, protocol analysis and
other fields. This method is a double-edged sword, and it is
also used for nefarious purposes—such as code theft, software
tampering, crack and piracy, as shown in Fig. 1, which is a
significant threat to software intellectual property protection.

Our goal is to maintain security of some confidential path
information that increases the complexity of reverse
engineering. We present a novel branch obfuscation approach
that hides the explicit path constraints using the implicit binary
instruction’s side effects and deploys key branch entry points
on a remote trusted entity.

Our approach replaces conditional jump instructions by
instructions that have side effects. If current execution
environment satisfies original path constraints, the
instructions’ side effects would cause an exception. Otherwise,
the program will execute sequentially without exception.
Exceptions will be caught by underlying operation system that
invokes our registered handling function to carry out
appropriate control transfer implicitly. Our approach also
exploits the code mobility to hide software’s key branch entry

points on a remote trusted entity that a full binary version of
the program is not present in memory at run time.

Execution trace

Virtual CPU

Binary code

predicates

Internal logic

concolic
execution

constraints
solving

highly
controled

environment

Reverse
Engingeering

Code theft

Tampering

Software crack

Software piracy

Fig. 1 Reverse engineering using path constraints

The main contribution of this paper is as follows:
1) We proposed a novel branch obfuscation approach to

mitigate path information leaking. This approach hides key
branch entry points on a remote trusted entity which is out of
attacker’s control.

2) We extended binary obfuscation approach based on
exceptions. This approach not only supports unconditional
control transfer instructions, such as jmp, but also supports
conditional control transfer instructions, which contain
software’s path constraints.

3) We designed and implemented a branch obfuscator. The
test result shows that branch obfuscation method is effective to
protect software’s path information, yet practical in terms of
performance.

The remainder of this paper is organized as follows.
Section 2 discusses related work of code obfuscation. Section
3 presents our proposed framework for branch obfuscation.
Section 4 details the design and implementation of our
obfuscator. Section 5 shows the evaluation results of branch
obfuscation. Finally we conclude in section 6.

2. Related Work

In the man-at-the-end (MATE) scenario [1], adversaries
have no restriction on the tools and techniques to use to
reverse engineer and tamper with the software. Code
obfuscation is the most viable method to fight against reverse
engineering [2][3], which aims at increasing the code
complexity to make it hard for adversaries to comprehend
software’s internal logic. Researchers have proposed many

International Conference on Computer, Networks and Communication Engineering (ICCNCE 2013)

© 2013. The authors - Published by Atlantis Press 152

mailto:linh&%20zh_sober%7D@ncepu.edu.cn�
mailto:mayong@mail.nankai.edu.cn�
mailto:wangbh@buaa.edu.cn�

strategies for code obfuscation, and novel solutions are still
under investigation.

A Symbolic Execution and Its Applications
In recent years, symbolic execution has advanced a lot. It is

usually combined with dynamic taint analysis and theorem
proving, and is becoming a powerful technique in security
analysis of software programs.

Automatic testing leverages forward symbolic execution to
achieve high code coverage and automatic input generation [5-
11]. Most of these applications automatically generate inputs
to trigger well-defined bugs [12-17], such as integer overflow,
memory errors, null pointer dereference, etc. Recent work
shows that symbolic execution can be used to generate
succinct and accurate input signatures or filters to block
exploits [18-21]. Previous work has also proposed several
improvements to enhance white-box exploration on the
programs that rely on string operations [22] and lift the
symbolic constraints from the byte level to the protocol level
[23]. Malware analysis leverages symbolic execution to
capture information flows through binaries [24-27].

B. Binary Obfuscation
 Barak et al. showed that some functions cannot be

obfuscated [4], and other papers claimed that perfect
obfuscation is impossible. However, in the practical
application, binary obfuscation techniques have been recently
proposed to increase reverse engineering complexity [28-30].

Many binary obfuscation approaches are proposed to fight
against static analysis. Popov et al. obfuscates binary code by
changing unconditional control transfers into signals (traps)
and inserting dummy control transfers and “junk” instructions
after the signals [31]. Sharif et al. presented conditional code
obfuscation scheme to prevent symbolic execution by
introducing hash function [32]. Wang et al. proposed linear

obfuscation method which introduces unsolved mathematics
conjectures into branch conditions to combat reverse
engineering using symbolic execution and theorem proving
[33].

C. Obfuscation Using Code Mobility
Falcarin et al [34], Ceccato et al [35] and Wang et al. [36]

proposed binary obfuscation approaches exploiting code
mobility that the code in the untrusted environment is not
complete. At run time, code arrives from a trusted network
entity, which reduces adversaries’ visibility on the whole
binary code. However, the above two methods need client
frequently interact large amount information with trusted
server.

3. Overview of Branch Obfuscation

In the software’s execution trace, the branch information is
disclosed by the conditional jump instructions. Each
conditional jump instruction contains 3 aspects: branch
address, branch condition and branch entry point, as shown in
Fig 2. Here, the branch address is the memory address of the
conditional jump instructions; the branch condition is the
trigger condition of control transfer; and the branch entry point
is the target memory address of conditional jump when the
branch condition is met.

Previous control flow obfuscation research focuses on the
branch entry point confusion, such as control flow
degradation, branch inversion, branch function and so on.
They obfuscate branch entry points by introducing indirect
jumps, because indirect jumps are difficult to be analyzed by
static reverse engineering techniques. However, the current
dynamic reverse engineering tools can collect and deduce
software’s path information accurately, which greatly weakens
the strength of branch entry point obfuscation.

Branch
address

Branch
condition

Branch entry
point

.text:01005305 cmp esi, 2

.text:01005308 jbe short loc_1005332

.text:0100530A cmp byte ptr [edi+2], 0BFh

.text:0100530E jnz short loc_1005332

.text:01005310 mov [ebp+var_258], 1

.text:0100531A mov [ebp+CodePage], 0FDE9h

.text:01005324 push 3

.text:01005326 pop eax

.text:01005327 mov [ebp+var_22C], eax

.text:0100532D jmp loc_10054CA

.text:0100530E jnz short loc_1005332

Fig 2 The branch information in software's execution trace

As shown in Fig. 3, this paper proposes a novel control
flow obfuscation strategy, which obfuscates branch address,
branch condition and branch entry point.

A. Obfuscate Branch Address and Condition
Each conditional jump instruction makes the program

produce 2 execution paths according to whether the branch
condition is met. Instead of jump instructions, we use
instruction’s side effects and exception handling function to
implicitly simulate software’s control flow transfers at run
time.

The x86 instruction set is a complex set that most
instructions have side effects. Instruction side effect can
implicitly change the CPU status and then implicitly affect the
execution of subsequent instructions. Evaluating each
instruction’s side effects and reasoning about various mutual
influences among different instructions are very complex.
Therefore, we exploit the implicitly side-effect instructions to
replace conditional jump instruction to increase the difficulty
of reverse analysis and reasoning.

153

Fig 3 Branch obfuscation overview

Fig. 4 gives an example of branch obfuscation. The Fig.
4(a) is the original control flow graph, and the Fig. 4(b) is the
obfuscated control flow graph that the conditional jump
instructions are replaced by the side-effect instruction “div”.

B. Obfuscate Branch Entry Point
When an instruction raises an exception, the operation

system will store the address of the instruction and invokes
appropriate exception handling functions. Fig. 5 (a) shows the
normal exception handling process. Note that if the exception
is handled, OS returns control to the same instruction address
where the exception is caught.

Fig 4 An example of branch obfuscation

Fig 5 Control transfer using exception handling

Fig. 5(b) is our exception handling process. The essential
difference is that we return control to a different address which
is the branch entry point of the original conditional jump
instruction. All branch entry points are stored in a mapping
table that maps branch address to branch entry points. This
mapping table is deployed on a remote trusted entity, which is
out of the control of adversaries as shown in Fig. 6. The

branch entry point is delivered from the remote trusted entity
at run time, which limits adversaries’ knowledge. Below we
will give the details of how branch obfuscation is
implemented.

Fig 6 Mapping table in the remote trusted entity

4. Design and Implementation

Having explained the basic idea, we turn to the
implementation details in this section. Conditional jump
instruction’s function consists of two aspects: judge whether
the jump conditions are met according to the current execution
environment; transfer control flow to the specified branch
entry point according to the result of the judgment. In this
section we use instruction’s side effects and exception
handling function to simulate conditional jump instructions.

A. Hide Branch Condition Using Instruction’s Side Effects
To hide original jump conditions, we should construct an

equivalent one that is more difficult to understand and reverse
engineer. There are two aspects to design obfuscated code:
judging whether the current execution environment satisfies
the jump condition; and raising exception using instruction’s
side effects when jump condition is met.

Judge jump condition. Whether the conditional jump
instructions will jump depends on the EFLAGS Register’s
status flags. Only five of the flags can be used in this way as
shown in TABLE I. The flags are used by CPU to indicate the
status of current execution environment, which is only one bit
(either 1 or 0).

TABLE I Status flags in the EFLAGS register
Flag Position Status Flags
CF 0 Carry Flag
PF 2 Parity Flag
ZF 6 Zero Flag
SF 7 Sign Flag
OF 11 Overflow Flag

Unfortunately, there is no binary instruction that is able to
directly access the EFLAGS register. We found some binary
instructions could indirectly access CPU status flags in the
EFLAGS register as shown in Fig. 7.

Fig. 7 gives three examples of indirectly accessing the
EFLAGS register to judge jump condition. Fig. 7(a) uses
conditional jump instruction to check CPU status. Fig. 7(b)
uses flag transfer instruction “lahf” to fetch EFLAGS register

154

to general register. And we can also use the “pushf” and
“pushfd” instructions to fetch EFLAGS register to the stack.

Another method is to use conditional transfer instruction to
judge the original jump conditions as shown in Fig. 7(c). In
addition, we can also directly judge the jump conditions
through arithmetic instructions without accessing EFLAGS
register as shown in Fig. 7 (d).

cmp ebx, eax
je target_addr

cmp ebx, eax
lahf
and eax, 100h
shr eax, 14
mov ebx, eax
div ebx

(a)

(c)

(b)

xor ebx, eax
div ebx

(d)

cmp ebx, eax
cmove ebx,
invalid_addr
mov ebx, dword
ptr [ebx]

Fig 7 Indirectly access CPU status flags

As shown in Fig. 7, jump conditions can be judged through
a variety of indirect and implicit ways, which can effectively
protect software’s path information at run time.

Construct exception codes. After judging jump conditions,
we use instruction’s side effects to raise exceptions at run time
when the original jump condition is met, as shown in Fig. 8.
The exception trigger conditions are equivalent to the original
jump conditions, and the instructions are commonly used
instructions that are difficult to identify.

Fig. 8(a) is the original code snippets that path information
is explicit. Fig. 8(b) is an example that uses the side effect of
instruction “div” to raise exception when the jump condition
in the Fig. 8(a) is met. When the jump condition is not met,
the dividend value is not 0 that program will normally execute;
When the original jump condition is met, the dividend value is
0 that will cause “dividing by zero” exception and transfer
control to exception handling function.

cmp eax, ebx
ja target_addr

cmp eax, ebx
lahf
and eax, 100h
shr eax, 8
mov ebx, eax
div ebx

(a) (c)(b)

mov ecx, random_value
sub ebx,eax
sbb ecx, random_value-1
shl ecx, 31
mov eax, dword ptr[ecx]

Fig 8 Examples of exception codes

Fig. 8(c) is another example that simulates the jump
condition in Fig. 8(a). The “mov” is the most widely used
instruction in the binary codes. If the target memory address of
instruction mov is invalid, “mov” will raise a memory access
exception. In Fig. 8(c), if the original jump condition is met,
the target memory address of mov is 0x00000000 that is not
readable, and mov will generate an exception at run time.
Otherwise, the target memory address is 0x80000000 that is
valid, then the control transfers to the next instruction without
exception.

It is very complicated for adversaries to reason about all
potential exceptions in the binary code. In the execution trace,
there are a large number of binary instructions, and the side
effects of each instruction have mutual influence and
interaction. So analyzing instruction’s side effects to collect
path information is not practical.

B. Transfer control flow implicitly
When an obfuscated instruction raises an exception, a

sequence of actions occurs, and the end result is that control is
transferred back to exception address. Our exception handling
process is different from the traditional exception handling
process that the control are transferred to specified instruction
rather than back to the exception address as shown in Fig. 5.
This process includes two aspects: exception handling
function and mapping table on the remote trusted entity.

Exception handling Function. The main role of exception
handling function is to cause the operation system to transfer
control to specified address. We do this when an exception is
raised from an instruction that we have inserted in the binary.
However, other instructions in the original program might
raise exceptions too. To tell the difference, we use a mapping
table that contains all memory address of our obfuscation
instructions and the corresponding branch entry points. If an
exception is raised from our obfuscation instructions, we
transfer the control to the jump address. If not, we transfer the
control to the default exception handling functions, as shown
in Fig. 5.

Mapping table. After obfuscating path information,
obfuscator needs to build the table that maps exception
address to branch entry points as shown in Fig. 9. Suppose that
N conditional jump instructions have been obfuscated, and
then there are N rows in the mapping table, one for each
obfuscation instruction.

To make it hard to reverse engineer the contents of this
table, we deploy the mapping table on a remote trusted entity
as shown in Fig. 10. An incomplete application is deployed to
the final user’s computer, containing exception handler to
access the mapping table. The trusted entity is a complete
secure machine or device placed somewhere on the network.
The exception handler can dynamically interact with the
trusted entity at run time to get control transfer’s target
address.

EFLAGS Register

1: mem_addr jcc target_addr

2: mem_addr jcc target_addr

n: mem_addr jcc target_addr

 … …

OF CFPFZFSF

1: Conditional Exception Code

2: Conditional Exception Code

N: Conditional Exception Code

 … …

Mapping Table

Exception Codes

mem_addr branch entry

 … …

Conditional Jump Instructions

Fig 9 Generate exception code and mapping table

155

The network communication between the trusted entity and
the program is created by exception handler through a network
socket, includes two logical channels: a request channel used
to send exception’s address, and a response channel used to
receive branch entry point. If the returned target address is
null, our exception handler will transfer control to default
exception handling functions.

Trusted Entity

Exception
handler

Branch entry point:
instrustions

……

instructions
……

Obfuscated
instructions Exception address

mapping
table

Fig 10 Execution process of branch obfuscation

As a trusted entity beyond the attacker's control, the
attacker couldn’t control the whole binary code, limiting the
path information collection and preventing reverse engineering
based on path-sensitive analysis, such as concolic execution
and theorem proving.

5. Exper iment

We used two code snippets to test branch obfuscation
using binary code’s side effects as shown in Fig. 11. Our
experiments were run on an Intel Core2 Q9400 CPU with 4
GB RAM running Ubuntu 10.04. The programs were
compiled with gcc version 4.3 at optimization level -O3. In the
experiment, we use Crest and BitBlaze to reverse engineer the
test samples, while they are using the Yices and STP as the
path constraint solving tools.

Crest 1

void time_check(int month,
 int day){
s1: if (month > 6){
s2: if (day > 15){
s3: behavior_a();
 }
s4: else{
s5: behavior_b();
 }
 }
s6: else{
s7: behavior_c();
 }

 }
(a) Branch conditions

based on date
(b) Branch conditions

based on IP

void ip_filter(int i_1,int i_2,
 int i_3, int i_4){
s1: if ((i_1 == 192){
s2: if(i_2 == 168){
s3: if (i_3 < 5){
s4: valid_ip();
s5: return;
 }
 }
 }
s6: invalid_ip()
s7: return;
 }

 works by inserting instrumentation code into a
target program to perform symbolic execution concurrently
with the concrete execution. The generated symbolic
constraints are solved to generate input that drives the test
execution down unexplored program paths. The analysis
results are shown in TABLE II and III.

Fig 11 Branch conditions based on date and IP

1 http://code.google.com/p/crest/

Before branch obfuscation, Crest could find 4 and 6
different execution paths from the two test samples as shown
in TABLE II, using 4 different heuristic path selection
methods. After branch obfuscation, Crest only found 1
execution path rather than the original 4 and 6 as shown in
TABLE III. In the obfuscated codes there are no conditional
jump instructions, only commonly used instructions with
implicit side effects, and Crest is not able to reason about
instruction’s side effects. Therefore, the Crest didn’t collect
any path information and only found 1 execution path.

TABLE II Test result on original code using Crest

 DFS CFG uniform random
date_check 4 4 4 1
ip_filter 6 6 6 1

TABLE III Test result on obfuscated code using Crest

 DFS CFG unifor
m

random

date_check 1 1 1 1
ip_filter 1 1 1 1

BitBlaze 2

As shown in TABLE IV and V, we recorded the number of
executed instructions before and after path obfuscation using
BitBlaze. Table data indicates that branch obfuscation using
binary code’s side effects only increases a small amount of
execution overhead, which is practical in performance.

 is a powerful binary analysis platform that
features a novel fusion of static and dynamic analysis
techniques, dynamic symbolic execution, and whole-system
emulation. The experimental results show that after the branch
obfuscation, BitBlaze cannot collect useful path information
from execution traces with the same reason as the Crest.
Therefore BitBlaze is unable to effectively traverse the path
space of the obfuscated codes.

TABLE IV time_check path information

time_check behavior_
a

behavior_
b

behavior_
c

Original 9426 9425 9422

Obfuscated 9701 9565 9440

TABLE V ip_filter path information

ip_check valid() invalid()
Original 11631 11838

Obfuscated 12035 12129

6. Conclusion

This article proposed a branch obfuscation strategy based
on the binary code side effects to hide explicit path
information into implicit instruction’s side effects. In addition,
we use operating system exception handling mechanism to
implicitly carry out control transfer and deploy key branch

2 http://bitblaze.cs.berkeley.edu/

156

entry points on the remote trusted entity that is beyond
adversaries’ control. In the x86 complex instruction set, most
instructions have implicit side effects, and side effects of
different instructions have mutual influence and interaction, so
analyzing instruction’s side effects to collect path information
is very complex and not practical. The experimental results
show that this obfuscation strategy effectively mitigates
software path information leaking problem and only adds a
small amount of execution cost.

References
[1]. P. Falcarin, C. Collberg, M. Jakubowski, “Guest Editors' Introduction:

Software Protection,” IEEE Software, 2011, 28: 24-27
[2]. C. Collberg, C. Thomborson, D. Low, J. Newsome, D. Song, H. Yin “A

Taxonomy of Obfuscation Transformations,” Department of Computer
Science, The University of Auckland, Technical Report 148, 1997

[3]. C. Collberg, C. Thomborson. “Watermarking, tamper-proofing, and
obfuscation – tools for software protection,” IEEE Transaction on
Software Engineering, 2002, 28(8): 735-746

[4]. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
K. Yang. “On the (Im) possibility of Obfuscating Programs,” Advances
in Cryptology (CRYPTO 01), LNCS 2139, Springer, 2001. 1-18

[5]. P. Godefroid, M. Y. Levin, D. Molnar. “Automated whitebox fuzz
testing,” Proceedings of the Network and Distributed System Security
Symposium. Rosten, VA: Interne t Society, 2008. 1-11

[6]. C. Cadar, D. Engler. “Execution generated test cases: How to make
systems code crash itself,” Proceedings of Int SPIN Workshop. Berlin:
Springer, 2005. 2-23

[7]. C. Cadar, D. Dunbar, D. Engler. “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,”
Proceedings of USENIX OSDI’08. Berkeley, CA: USENIX, 2008.

[8]. G. Lee, J. Morris, K. Parker, G. A. Bundell, P. Lam “Using symbolic
execution to guide test generation,” Software Testing, Verification &
Reliability, 2005,15(1):41-61

[9]. C. Cadar, V. Ganesh, P. Pawlowski, D. L. Dill, D. R. “EXE:
automatically generating inputs of death,” Proceedings of the 2006 ACM
Conference on Computer and Communications Security (CCS).

[10]. P. Godefroid, N. Klarlund, K. Sen. “DART: Directed automated
random testing,” Proceedings of the ACM Conference on Programming
Language Design and Implementation, 2005.

[11]. K. Sen, D. Marinov, G. Agha. “CUTE: A concolic unit testing engine
for c,” Proceedings of the 13th International Symposium on the
Foundations of Software Engineering, 2005.

[12]. D. Brumley, P. Poosankam, D. Song, J. Zheng. “Automatic Patch-
Based Exploit Generation is Possible: Techniques and Implications,”
Proceedings of IEEE Symposium on Security and Privacy. New York,
NY: IEEE,2008. 143-157

[13]. D. Molnar, X. C. Li, D. A. Wagner. “Dynamic test generation to find
integer bugs in x86 binary linux programs,” Proceedings of USENIX
Security Symposium. Berkeley, CA: USENIX, 2009. 67-82

[14]. V. Felmetsger, L. Cavedon, C. Kruegel, G. Vigna. “Toward Automated
Detection of Logic Vulnerabilities in Web Applications,” Proceedings of
the 19thUSENIX Security Symposium. Berkeley, CA:
USENIX,2010.143-160

[15]. T. Wang, T. Wei, Z. Lin, W. Zou. “IntScope: Automatically Detecting
Integer Overflow Vulnerability in X86 Binary Using Symbolic
Execution,” Proceedings of the 16th Annual Network and Distributed
System Security Symposium. Rosten VA: Internet Society, 2009.

[16]. D. Brumley, J. Newsome, D. Song, H. Wang, S. Jha. “Towards
automatic generation of vulnerability-based signatures,” Proceedings of
2006 IEEE Symposium Security and Privacy. Piscataway, NJ:IEEE,
2006. 2-16

[17]. C. Cho, D. Babić, P. Poosankam, K. Z. Chen, E. X. Wu, D. Song.
“MACE: Model-inference-Assisted Concolic Exploration for Protocol
and Vulnerability Discovery,” Proceedings of the 20th USENIX Security
Symposium. Berkeley, CA: USENIX, 2011.

[18]. D. Brumley, C. Hartwig, Z. Liang. Automatically identifying trigger-
based behavior in malware. Book Chapter in ”Botnet Analysis in
Defense” 36 (2007)

[19]. D. Brumley, H. Wang, S. Jha, D. Song. “Creating Vulnerability
Signatures Using Weakest Preconditions,” Proceedings of the 20th IEEE
Computer Security Foundations Symposium. Piscataway, NJ: IEEE,
2007. 311-325

[20]. D. Brumley, C. Hartwig, M. Kang, Z. Liang, J. Newsome, P.
Poosankam, et al. “BitScope: Automatically Dissecting Malicious
Binaries,” School of Computer Science, Carnegie Mellon University,
Technical Report CS-07-133, 2007

[21]. M. Costa, M. Castro, L. Zhou, L. Zhang, M. Peinado. “Bouncer:
Securing software by blocking bad input,” Proceedings of the 2007 ACM
Symposium on Operating Systems Principles (SOSP) , 2007.

[22]. J. Caballero, S. McCamant, A. Barth, D. Song. “Extracting models of
security sensitive operations using string-enhanced white-box exploration
on binaries,” Technical Report UCB/EECS-2009-36, EECS Department,
University of California, Berkeley, 2009.

[23]. J. Caballero, Z. Liang, P. Poosankam, D. Song. “Towards Generating
High Coverage Vulnerability-Based Signatures with Protocol-Level
Constraint-Guided Exploration,” Proceedings of the 12th International
Symposium on Recent Advances in Intrusion Detection. Berlin: Springer,
2009. 161-181

[24]. P. M. Comparetti，G. Salvaneschi，E. Kirda, C. Kolbitsch, C. Kruegel,
S. Zanero. “Identifying Dormant Functionality in Malware Programs,”
Proceedings of the 2010 IEEE Symposium on Security and Privacy.
Piscataway, NJ: IEEE, 2010. 61-76

[25]. A. Moser, C. Kruegel, E.Kirda. “Exploring Multiple Execution Paths for
Malware Analysis,” Proceedings of IEEE Symposium on Security and
Privacy. Piscataway, NJ: IEEE, 2007 231-245

[26]. H. Yin, D. Song, M. Egele, C. Kruegel, E. Kirda. “Panorama: Capturing
System-wide Information Flow for Malware Detection and Analysis,”
Proceedings of ACM Conference on Computer and Communication
Security. New York, NY: ACM, 2007. 116-127

[27]. D. Brumley, C. Hartwig, Z. Liang. “Automatically Identifying Trigger-
based Behavior in Malware,” In: Lee W, Wang C, Dagon D, eds. Botnet
Detection. Berlin: Springer, 2008. 65-88

[28]. B. Lynn, M. Prabhakaran, A. Sahai. “Positive Results and Techniques
for Obfuscation,” Advances in Cryptology-EUROCRYPT, Lecture Notes
in Computer Science(LNCS), 2004，3027:20-39

[29]. N. Kuzurin, A. Shokurov, N. Varnovsky, V. Zakharov. “On the Concept
of Software Obfuscation in Computer Security,” Lecture Notes in
Computer Science(LNCS), 2007, 4779: 281-298

[30]. P. Beaucamps, E. Filiol. “On the possibility of practically obfuscating
programs towards a unified perspective of code protection,” Journal in
Computer Virology, 2007, 3(1): 3-21

[31]. I. Popov , S. Debray, G. Andrews. “Binary obfuscation using signals,”
Proceedings of the USENIX Security Symposium. Berkeley, CA:
USENIX, 2007. 321-333

[32]. M. Sharif, A. Lanzi, J. Giffin, W. Lee. “Impeding malware analysis
using conditional code obfuscation,” Proceedings of the Network and
Distributed System Security Symposium. Rosten,VA: Internet Society,
2008. 321-333

[33]. Z. Wang, J. Ming, C. Jia, D. Gao . “Linear Obfuscation to Combat
Symbolic Execution,” Proceedings of the European Symposium on
Research in Computer Security (ESORICS2011), Springer, 2011, 210-
226

[34]. P. Falcarin, S. Carlo, A. Cabutto, N. Garazzino, D. Barberis.
“Exploiting Code Mobility for Dynamic Binary Obfuscation,”
Proceedings of the 2011 World Congress on Internet Security,
Piscataway, NJ: IEEE, 2011. 114-120

[35]. M. Ceccato, P. Tonella. “CodeBender: Remote Software Protection
Using Orthogonal Replacement,” IEEE Software, 2011, 28(2): 28-34

[36]. Z. Wang, C. Jia, M. Liu, X Yu. “Branch Obfuscation Using Code
Mobility and Signal,” Proceedings of the 7th IEEE International
Workshop on Security, Trust, and Privacy for Software
Applications (STPSA'12), Izmir, Turkey, 2012

157

	Hong Lin1, Xiaohua Zhang1, Ma Yong2, Baohui Wang3
	TABLE I Status flags in the EFLAGS register
	TABLE II Test result on original code using Crest
	TABLE III Test result on obfuscated code using Crest
	TABLE IV time_check path information
	TABLE V ip_filter path information
	References

