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 Abstract - The path constraints are leaked by binary conditional 
jump instructions which are the binary representation of software’s 
internal logic. Based on the problem of software’s path constraints 
leaking, reverse engineering using path-sensitive techniques such as 
symbolic execution and theorem proving poses a new threat to 
software intellectual property protection. In order to mitigate path 
information leaking problem, this paper proposed a novel branch 
obfuscation scheme that uses binary code side effects to hide path 
constraints and takes advantage of remote trusted entity to protect 
software’s control flow graph, without changing software’s 
functionality. The experimental results show that this branch 
obfuscation technique could effectively protect software’s path 
constraints against state-of-the-art reverse engineering, yet practical 
in terms of performance. 
 Index Terms - code obfuscation, binary code side effects, 
exception handling, symbolic execution, trusted entity 

1.  Introduction  

At run time, binary conditional jump instructions disclose 
software’s path information. Researchers could easily collect 
path constraints from software’s execution trace using concolic 
execution technique and accurately reason about software’s 
internal logic.  

This reverse engineering method based on the software’s 
path information leaking problem has been widely applied in 
security analysis, such as software testing, vulnerability 
discovering, malicious code analysis, protocol analysis and 
other fields. This method is a double-edged sword, and it is 
also used for nefarious purposes—such as code theft, software 
tampering, crack and piracy, as shown in Fig. 1, which is a 
significant threat to software intellectual property protection. 

Our goal is to maintain security of some confidential path 
information that increases the complexity of reverse 
engineering. We present a novel branch obfuscation approach 
that hides the explicit path constraints using the implicit binary 
instruction’s side effects and deploys key branch entry points 
on a remote trusted entity.  

Our approach replaces conditional jump instructions by 
instructions that have side effects. If current execution 
environment satisfies original path constraints, the 
instructions’ side effects would cause an exception. Otherwise, 
the program will execute sequentially without exception. 
Exceptions will be caught by underlying operation system that 
invokes our registered handling function to carry out 
appropriate control transfer implicitly. Our approach also 
exploits the code mobility to hide software’s key branch entry 

points on a remote trusted entity that a full binary version of 
the program is not present in memory at run time. 
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Fig. 1   Reverse engineering using path constraints 

The main contribution of this paper is as follows: 
1) We proposed a novel branch obfuscation approach to 

mitigate path information leaking. This approach hides key 
branch entry points on a remote trusted entity which is out of 
attacker’s control.  

2) We extended binary obfuscation approach based on 
exceptions. This approach not only supports unconditional 
control transfer instructions, such as jmp, but also supports 
conditional control transfer instructions, which contain 
software’s path constraints. 

3) We designed and implemented a branch obfuscator. The 
test result shows that branch obfuscation method is effective to 
protect software’s path information, yet practical in terms of 
performance. 

The remainder of this paper is organized as follows. 
Section 2 discusses related work of code obfuscation. Section 
3 presents our proposed framework for branch obfuscation. 
Section 4 details the design and implementation of our 
obfuscator. Section 5 shows the evaluation results of branch 
obfuscation. Finally we conclude in section 6. 

2.  Related Work 

In the man-at-the-end (MATE) scenario [1], adversaries 
have no restriction on the tools and techniques to use to 
reverse engineer and tamper with the software. Code 
obfuscation is the most viable method to fight against reverse 
engineering [2][3], which aims at increasing the code 
complexity to make it hard for adversaries to comprehend 
software’s internal logic. Researchers have proposed many 
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strategies for code obfuscation, and novel solutions are still 
under investigation. 

A Symbolic Execution and Its Applications 
In recent years, symbolic execution has advanced a lot. It is 

usually combined with dynamic taint analysis and theorem 
proving, and is becoming a powerful technique in security 
analysis of software programs.  

Automatic testing leverages forward symbolic execution to 
achieve high code coverage and automatic input generation [5-
11]. Most of these applications automatically generate inputs 
to trigger well-defined bugs [12-17], such as integer overflow, 
memory errors, null pointer dereference, etc. Recent work 
shows that symbolic execution can be used to generate 
succinct and accurate input signatures or filters to block 
exploits [18-21]. Previous work has also proposed several 
improvements to enhance white-box exploration on the 
programs that rely on string operations [22] and lift the 
symbolic constraints from the byte level to the protocol level 
[23]. Malware analysis leverages symbolic execution to 
capture information flows through binaries [24-27]. 

B. Binary Obfuscation 
 Barak et al. showed that some functions cannot be 

obfuscated [4], and other papers claimed that perfect 
obfuscation is impossible. However, in the practical 
application, binary obfuscation techniques have been recently 
proposed to increase reverse engineering complexity [28-30]. 

Many binary obfuscation approaches are proposed to fight 
against static analysis. Popov et al. obfuscates binary code by 
changing unconditional control transfers into signals (traps) 
and inserting dummy control transfers and “junk” instructions 
after the signals [31]. Sharif et al. presented conditional code 
obfuscation scheme to prevent symbolic execution by 
introducing hash function [32]. Wang et al. proposed linear 

obfuscation method which introduces unsolved mathematics 
conjectures into branch conditions to combat reverse 
engineering using symbolic execution and theorem proving 
[33].  

C. Obfuscation Using Code Mobility 
Falcarin et al [34], Ceccato et al [35] and Wang et al. [36] 

proposed binary obfuscation approaches exploiting code 
mobility that the code in the untrusted environment is not 
complete. At run time, code arrives from a trusted network 
entity, which reduces adversaries’ visibility on the whole 
binary code. However, the above two methods need client 
frequently interact large amount information with trusted 
server. 

3.  Overview of Branch Obfuscation 

In the software’s execution trace, the branch information is 
disclosed by the conditional jump instructions. Each 
conditional jump instruction contains 3 aspects: branch 
address, branch condition and branch entry point, as shown in 
Fig 2. Here, the branch address is the memory address of the 
conditional jump instructions; the branch condition is the 
trigger condition of control transfer; and the branch entry point 
is the target memory address of conditional jump when the 
branch condition is met. 

Previous control flow obfuscation research focuses on the 
branch entry point confusion, such as control flow 
degradation, branch inversion, branch function and so on. 
They obfuscate branch entry points by introducing indirect 
jumps, because indirect jumps are difficult to be analyzed by 
static reverse engineering techniques. However, the current 
dynamic reverse engineering tools can collect and deduce 
software’s path information accurately, which greatly weakens 
the strength of branch entry point obfuscation. 
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.text:01005305  cmp   esi, 2

.text:01005308  jbe   short loc_1005332

.text:0100530A  cmp   byte ptr [edi+2], 0BFh

.text:0100530E  jnz   short loc_1005332

.text:01005310  mov   [ebp+var_258], 1

.text:0100531A  mov   [ebp+CodePage], 0FDE9h

.text:01005324  push  3

.text:01005326  pop   eax

.text:01005327  mov   [ebp+var_22C], eax

.text:0100532D  jmp   loc_10054CA

.text:0100530E jnz short loc_1005332

 
Fig 2   The branch information in software's execution trace 

As shown in Fig. 3, this paper proposes a novel control 
flow obfuscation strategy, which obfuscates branch address, 
branch condition and branch entry point. 

A. Obfuscate Branch Address and Condition 
Each conditional jump instruction makes the program 

produce 2 execution paths according to whether the branch 
condition is met. Instead of jump instructions, we use 
instruction’s side effects and exception handling function to 
implicitly simulate software’s control flow transfers at run 
time. 

The x86 instruction set is a complex set that most 
instructions have side effects. Instruction side effect can 
implicitly change the CPU status and then implicitly affect the 
execution of subsequent instructions. Evaluating each 
instruction’s side effects and reasoning about various mutual 
influences among different instructions are very complex. 
Therefore, we exploit the implicitly side-effect instructions to 
replace conditional jump instruction to increase the difficulty 
of reverse analysis and reasoning. 
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Fig 3   Branch obfuscation overview 

Fig. 4 gives an example of branch obfuscation. The Fig. 
4(a) is the original control flow graph, and the Fig. 4(b) is the 
obfuscated control flow graph that the conditional jump 
instructions are replaced by the side-effect instruction “div”. 

B. Obfuscate Branch Entry Point 
When an instruction raises an exception, the operation 

system will store the address of the instruction and invokes 
appropriate exception handling functions. Fig. 5 (a) shows the 
normal exception handling process. Note that if the exception 
is handled, OS returns control to the same instruction address 
where the exception is caught.  

 

 
Fig 4   An example of branch obfuscation 

 
Fig 5   Control transfer using exception handling 

Fig. 5(b) is our exception handling process. The essential 
difference is that we return control to a different address which 
is the branch entry point of the original conditional jump 
instruction. All branch entry points are stored in a mapping 
table that maps branch address to branch entry points. This 
mapping table is deployed on a remote trusted entity, which is 
out of the control of adversaries as shown in Fig. 6. The 

branch entry point is delivered from the remote trusted entity 
at run time, which limits adversaries’ knowledge. Below we 
will give the details of how branch obfuscation is 
implemented. 

 
Fig 6   Mapping table in the remote trusted entity 

4.  Design and Implementation  

Having explained the basic idea, we turn to the 
implementation details in this section. Conditional jump 
instruction’s function consists of two aspects: judge whether 
the jump conditions are met according to the current execution 
environment; transfer control flow to the specified branch 
entry point according to the result of the judgment. In this 
section we use instruction’s side effects and exception 
handling function to simulate conditional jump instructions.  

A. Hide Branch Condition Using Instruction’s Side Effects 
To hide original jump conditions, we should construct an 

equivalent one that is more difficult to understand and reverse 
engineer. There are two aspects to design obfuscated code: 
judging whether the current execution environment satisfies 
the jump condition; and raising exception using instruction’s 
side effects when jump condition is met.  

Judge jump condition. Whether the conditional jump 
instructions will jump depends on the EFLAGS Register’s 
status flags. Only five of the flags can be used in this way as 
shown in TABLE I. The flags are used by CPU to indicate the 
status of current execution environment, which is only one bit 
(either 1 or 0).  

TABLE I    Status flags in the EFLAGS register 
Flag Position Status Flags 
CF 0 Carry Flag 
PF 2 Parity Flag 
ZF 6 Zero Flag 
SF 7 Sign Flag 
OF 11 Overflow Flag 

Unfortunately, there is no binary instruction that is able to 
directly access the EFLAGS register. We found some binary 
instructions could indirectly access CPU status flags in the 
EFLAGS register as shown in Fig. 7.  

Fig. 7 gives three examples of indirectly accessing the 
EFLAGS register to judge jump condition. Fig. 7(a) uses 
conditional jump instruction to check CPU status. Fig. 7(b) 
uses flag transfer instruction “lahf” to fetch EFLAGS register 
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to general register. And we can also use the “pushf” and 
“pushfd” instructions to fetch EFLAGS register to the stack.  

Another method is to use conditional transfer instruction to 
judge the original jump conditions as shown in Fig. 7(c). In 
addition, we can also directly judge the jump conditions 
through arithmetic instructions without accessing EFLAGS 
register as shown in Fig. 7 (d). 

cmp ebx, eax
je target_addr

cmp ebx, eax
lahf
and eax, 100h 
shr eax, 14
mov ebx, eax
div ebx

(a)

(c)

(b)

xor ebx, eax
div ebx

(d)

cmp ebx, eax
cmove ebx, 
invalid_addr
mov ebx, dword 
ptr [ebx]

 
Fig 7   Indirectly access CPU status flags 

As shown in Fig. 7, jump conditions can be judged through 
a variety of indirect and implicit ways, which can effectively 
protect software’s path information at run time. 

Construct exception codes. After judging jump conditions, 
we use instruction’s side effects to raise exceptions at run time 
when the original jump condition is met, as shown in Fig. 8. 
The exception trigger conditions are equivalent to the original 
jump conditions, and the instructions are commonly used 
instructions that are difficult to identify. 

Fig. 8(a) is the original code snippets that path information 
is explicit. Fig. 8(b) is an example that uses the side effect of 
instruction “div” to raise exception when the jump condition 
in the Fig. 8(a) is met. When the jump condition is not met, 
the dividend value is not 0 that program will normally execute; 
When the original jump condition is met, the dividend value is 
0 that will cause “dividing by zero” exception and transfer 
control to exception handling function. 

cmp eax, ebx
ja target_addr

cmp eax, ebx
lahf
and eax, 100h 
shr eax, 8
mov ebx, eax
div ebx

(a) (c)(b)

mov ecx, random_value
sub ebx,eax
sbb ecx, random_value-1
shl ecx, 31
mov eax, dword ptr[ecx]

 
Fig 8   Examples of exception codes 

Fig. 8(c) is another example that simulates the jump 
condition in Fig. 8(a). The “mov” is the most widely used 
instruction in the binary codes. If the target memory address of 
instruction mov is invalid, “mov” will raise a memory access 
exception. In Fig. 8(c), if the original jump condition is met, 
the target memory address of mov is 0x00000000 that is not 
readable, and mov will generate an exception at run time. 
Otherwise, the target memory address is 0x80000000 that is 
valid, then the control transfers to the next instruction without 
exception.  

It is very complicated for adversaries to reason about all 
potential exceptions in the binary code. In the execution trace, 
there are a large number of binary instructions, and the side 
effects of each instruction have mutual influence and 
interaction. So analyzing instruction’s side effects to collect 
path information is not practical.  

B. Transfer control flow implicitly 
When an obfuscated instruction raises an exception, a 

sequence of actions occurs, and the end result is that control is 
transferred back to exception address. Our exception handling 
process is different from the traditional exception handling 
process that the control are transferred to specified instruction 
rather than back to the exception address as shown in Fig. 5. 
This process includes two aspects: exception handling 
function and mapping table on the remote trusted entity. 

Exception handling Function. The main role of exception 
handling function is to cause the operation system to transfer 
control to specified address. We do this when an exception is 
raised from an instruction that we have inserted in the binary. 
However, other instructions in the original program might 
raise exceptions too. To tell the difference, we use a mapping 
table that contains all memory address of our obfuscation 
instructions and the corresponding branch entry points. If an 
exception is raised from our obfuscation instructions, we 
transfer the control to the jump address. If not, we transfer the 
control to the default exception handling functions, as shown 
in Fig. 5.  

Mapping table. After obfuscating path information, 
obfuscator needs to build the table that maps exception 
address to branch entry points as shown in Fig. 9. Suppose that 
N conditional jump instructions have been obfuscated, and 
then there are N rows in the mapping table, one for each 
obfuscation instruction.  

To make it hard to reverse engineer the contents of this 
table, we deploy the mapping table on a remote trusted entity 
as shown in Fig. 10. An incomplete application is deployed to 
the final user’s computer, containing exception handler to 
access the mapping table. The trusted entity is a complete 
secure machine or device placed somewhere on the network. 
The exception handler can dynamically interact with the 
trusted entity at run time to get control transfer’s target 
address. 

EFLAGS Register

1: mem_addr jcc target_addr

2: mem_addr jcc target_addr

n: mem_addr jcc target_addr

   … … 

OF CFPFZFSF

1: Conditional Exception Code

2: Conditional Exception Code

N: Conditional Exception Code

   … … 

Mapping Table

Exception Codes

mem_addr branch entry

  … … 

Conditional Jump Instructions

 
Fig 9   Generate exception code and mapping table 
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The network communication between the trusted entity and 
the program is created by exception handler through a network 
socket, includes two logical channels: a request channel used 
to send exception’s address, and a response channel used to 
receive branch entry point. If the returned target address is 
null, our exception handler will transfer control to default 
exception handling functions. 

Trusted Entity

Exception
handler 

Branch entry point: 
instrustions

…… 

instructions 
…… 

Obfuscated 
instructions Exception address

mapping 
table

 
Fig 10   Execution process of branch obfuscation 

As a trusted entity beyond the attacker's control, the 
attacker couldn’t control the whole binary code, limiting the 
path information collection and preventing reverse engineering 
based on path-sensitive analysis, such as concolic execution 
and theorem proving. 

5.  Exper iment 

We used two code snippets to test branch obfuscation 
using binary code’s side effects as shown in Fig. 11. Our 
experiments were run on an Intel Core2 Q9400 CPU with 4 
GB RAM running Ubuntu 10.04. The programs were 
compiled with gcc version 4.3 at optimization level -O3. In the 
experiment, we use Crest and BitBlaze to reverse engineer the 
test samples, while they are using the Yices and STP as the 
path constraint solving tools. 

Crest 1

void time_check(int month, 
               int day){
s1:  if (month > 6){
s2:    if (day > 15){
s3:      behavior_a();
       }
s4:    else{
s5:      behavior_b();
       }
     }
s6:  else{
s7:    behavior_c();
     }

   }
(a) Branch conditions 

based on date
(b) Branch conditions 

based on IP

void ip_filter(int i_1,int i_2, 
             int i_3, int i_4){
s1:  if ((i_1 == 192){ 
s2:    if(i_2 == 168){
s3:      if (i_3 < 5){
s4:        valid_ip();
s5:        return;
         }   
       }
     }
s6:  invalid_ip()
s7:  return;
   }

 works by inserting instrumentation code into a 
target program to perform symbolic execution concurrently 
with the concrete execution. The generated symbolic 
constraints are solved to generate input that drives the test 
execution down unexplored program paths. The analysis 
results are shown in TABLE II and III.  

 
Fig 11   Branch conditions based on date and IP 

1 http://code.google.com/p/crest/ 

Before branch obfuscation, Crest could find 4 and 6 
different execution paths from the two test samples as shown 
in TABLE II, using 4 different heuristic path selection 
methods. After branch obfuscation, Crest only found 1 
execution path rather than the original 4 and 6 as shown in 
TABLE III. In the obfuscated codes there are no conditional 
jump instructions, only commonly used instructions with 
implicit side effects, and Crest is not able to reason about 
instruction’s side effects. Therefore, the Crest didn’t collect 
any path information and only found 1 execution path. 

TABLE II    Test result on original code using Crest 

 DFS CFG uniform random 
date_check 4 4 4 1 
ip_filter 6 6 6 1 

TABLE III    Test result on obfuscated code using Crest 

 DFS CFG unifor
m 

random 

date_check 1 1 1 1 
ip_filter 1 1 1 1 

BitBlaze 2

As shown in TABLE IV and V, we recorded the number of 
executed instructions before and after path obfuscation using 
BitBlaze. Table data indicates that branch obfuscation using 
binary code’s side effects only increases a small amount of 
execution overhead, which is practical in performance. 

 is a powerful binary analysis platform that 
features a novel fusion of static and dynamic analysis 
techniques, dynamic symbolic execution, and whole-system 
emulation. The experimental results show that after the branch 
obfuscation, BitBlaze cannot collect useful path information 
from execution traces with the same reason as the Crest. 
Therefore BitBlaze is unable to effectively traverse the path 
space of the obfuscated codes. 

TABLE IV    time_check path information 

time_check behavior_
a 

behavior_
b 

behavior_
c 

Original 9426  9425 9422  

Obfuscated 9701 9565 9440  

TABLE V    ip_filter path information 

ip_check valid() invalid() 
Original 11631 11838 

Obfuscated 12035 12129 

6.  Conclusion 

This article proposed a branch obfuscation strategy based 
on the binary code side effects to hide explicit path 
information into implicit instruction’s side effects. In addition, 
we use operating system exception handling mechanism to 
implicitly carry out control transfer and deploy key branch 

2 http://bitblaze.cs.berkeley.edu/ 
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entry points on the remote trusted entity that is beyond 
adversaries’ control. In the x86 complex instruction set, most 
instructions have implicit side effects, and side effects of 
different instructions have mutual influence and interaction, so 
analyzing instruction’s side effects to collect path information 
is very complex and not practical. The experimental results 
show that this obfuscation strategy effectively mitigates 
software path information leaking problem and only adds a 
small amount of execution cost. 
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