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 Abstract - The proposed paper presents a method of 

constructing a control system with increased potential of robust 

stability for systems with uncertain parameters in the two-parameter 

class of structurally stable maps of catastrophe theory to synthesize 

highly efficient management system, have the property of stability for 

any changes in uncertain parameters. 

 In conditions of parametric uncertainty increased potential of 

robust stability is a key factor in ensuring the protection of the 

control system from falling into the chaotic motion, and also 

guarantees the reliability of the system. 

 Research of robust stability control system based on the method 

of vector function Lyapunov, based on the geometric interpretation of 

the direct method A.M. Lyapunov, and the Morse lemma of 

catastrophe theory. 

 Keywords - control system, parameter uncertainty, robust 

stability, structurally stable maps, stability region. 

1.     Introduction 

 It is generally recognized that the majority of real control 

systems operate under some degree of uncertainty. In these 

cases, the uncertainty may be due to incomplete knowledge of 

parameters of the controlled plant or due to unpredictable 

time-varying characteristics in the process of operation. 

Therefore, the problem of robust stability is one of the most 

prominent problems of control theory and it is of great 

practical interest. In general, statement of the problem includes 

definition of the limits on parameter variations of the system 

that would be required to preserve stability. Clearly, these 

limits are determined by the region of stability due to 

parameter uncertainty of the plant and by controller settings. 

 Most of the known approaches [1] to implementing 

controls for systems with uncertain parameters rely on robust 

stability for the system with a given structure and linear 

control laws, or inertia less nonlinear (relay) characteristics. 

These methods do not allow designing a control system with 

expanded range of robust stability when uncertainty of the 

control parameters of the object and parameter drift are 

present. 

There are currently no provisions for scientific research 

and development of control systems with a wide range of 

robust stability. 

The results reported in [2] focus on dynamic systems and 

address the development of self-organizing processes of 

physical-chemical and biological systems. Models of these 

systems are established in the form of structurally stable maps 

using the catastrophe theory [3, 4] and studied as a universal 

model of evolution and self-organization in nature. It is 

therefore of particular interest, in terms of great uncertainty, to 

build a system of automatic control in the class of structurally 

stable maps associated with mathematical models of complex 

behavior of the system [5, 6], and it is consistent with many 

sustainable solutions. 

This paper is devoted to the issues of synthesis of systems 

with robust stability for dynamic objects with uncertain 

parameters and construction of control systems in a class of 

two-parameter structurally stable maps [5, 6], which allows 

increasing the range of robust stability and improving quality 

characteristics of the control system. 

The concept of building control systems with a high 

potential for robust stability of dynamic objects is based on the  

catastrophe theory [3, 4], where the main result are obtained in 

the form of basic structurally stable maps. They are limited 

and directly related to the number of control parameters. 

Let the control system be described by the following state 

equation 

.,,, RyRxcxybuAxx n                      (1) 

Control law is given in the form of two-parameter 

structurally stable maps [1, 2]: 
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A system given by (1) and (2) can be expanded as follows: 

.

.)(

...)(

)(

,

,

,

1

1

2'

4

212

2

2

'

2

4

2

11

2

1

'

1

4

1

3
2

2
1

xy

xakxk

xxakxkx

xakxkx
dt

dx

x
dt

dx

x
dt

dx

nnnn

nn

n
n



































                            (3) 

International Conference on Computer, Networks and Communication Engineering (ICCNCE 2013)

© 2013. The authors - Published by Atlantis Press 201



Then one of the steady states of the system is given by 

.0...21  nsss xxx                                       (4) 

Other steady states of the system (3) will be determined by 

solving the equation 
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2.   Stability of the steady states of the system 

We can investigate robust stability of the steady states (5) 

and (6) by using the basic provisions of the direct Lyapunov 

method [7, 8]. Asymptotic stability of the equilibrium points of 

the system can be shown if and only if there exists a positive 

definite Lyapunov function )(xV such that its time derivative 

)(
.

xV along the solutions of the differential state equation (3) 

is a negative definite function. 

In our case, the time derivative of the Lyapunov function, 

is defined geometrically as the scalar product of the vector 

functions representing gradient of Lyapunov  xxV  /)(  and 

the velocity vector  dtdx / . The gradient vector of a scalar 

Lyapunov function is pointed in the direction of increase of the 

latter, i.e., from the origin in the direction of the highest 

growth of Lyapunov functions. It should also be noted that in 

studies of stability of the systems reported in  [7, 8] the origin 

corresponds to a given action or sets the state of the system. 

State equations (1) or (3) are always in deviations x  from 

the steady state )( SS XXxxX  . Therefore, the state 

equation (1) or (3) expresses the rate of change of a vector of 

deviations and we can assume that the velocity vector in a 

stable system is directed to the origin. 

If the Lyapunov function )(xV is specified as a vector 

function of )),(),...,(),(( 21 xVxVxV n
 for geometric 

interpretation of the components we choose antigradient 

Lyapunov functions ),...,1,)(( nixxVi  to be equal to 

the largest component of the velocity vector
 
 dtdx / : 
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Then the time derivative of the components of the vector 

Lyapunov function for stability of the steady state (4) will be: 
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From the above, it follows that the total time derivative of 

the components of the vector function Lyapunov will always 

be a negative-definite function. 

Also, the total time derivative of the Lyapunov function 

can be represented as a scalar function as follows 
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It can be shown that the vector function of Lyapunov 

),...,1,( niVi   shown by the components of the gradient vector 

is: 
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Lyapunov function in the scalar form is found as: 

202



.)1(
2

1

3

1

5

1
,...,)1(

2

1

3

1

5

1

)(
2

1

3

1

5

1
)1(

2

1

3

1

5

1
,...,)1(

2

1

3

1

5

1
)(

2

1

3

1

5

1
)(

2

1

3'

52

212

3

2

'

2

5

2

2

11

3

1

'

1

5

1

2

1

3'52

212

3

2

'

2

5

2

2

11

3

1

'

1

5

1

nnnn

nn

nnn

nnnn

n

xakxk

xxakxkx

xakxkxxak

xkxxakxk

xxakxkxxV















     (7) 

          
It is not obvious if function V (x) from (7) is positive-

definite or negative-definite, so we will make use of Morse 

lemma from catastrophe theory. 

Let the system given by (3) be in a state of equilibrium 

(stable or sustainable) i.e. in the steady state, where the 

velocity vector )0/( dtdx  
is zero. Then, the gradient of the 

Lyapunov function 0)(  xV  
is zero, the stationary states of 

the system are found by Morse lemma 0det ijV  
to 

guarantee the existence of a smooth change of variables, such 

that the Lyapunov function (7) can be represented locally in a 

quadratic form. It follows that it is necessary to calculate the 

Hessian matrix for the stationary states (5). 

Stability matrix (Hessian) [3,4] for the steady state (5) is 

defined as 
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Lyapunov function (7) in the vicinity of the steady state 

(4) can be represented in a quadratic form 
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Then conditions of robust stability of the steady state (5) 

are defined by the system of inequalities: 
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Stability of steady states (5) and (6) is based on Lyapunov 

functions and can be obtained from:
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Steady states (5) and (6) cannot exist at the same time. 

Only one of them exists at any moment and it will always be 

stable. With the loss of this state, there is a new steady state, 

and it will also be stable. This makes it possible to build a 

control system that will be stable when these conditional states 

are (10) and (11) 

3.   Conclusion  

 The results obtained by designing control systems with 

increased potential of robust stability and dynamics, allow to 

assure safety and efficiency of control systems in engineering 

and technology during their construction and operation. 

 We also developed an approach to designing control 

systems with increased potential of robust stability for linear 

objects with uncertain parameters by using control laws in the 

two-parameter class of structurally stable maps. It was shown 

that the system is asymptotically stable and steady state can be 

reached for both negative and positive change of uncertain 

parameters of the control object. When uncertain parameters 

transition through zero, bifurcation occurs and new stable 

branches are created. At the same time, zero steady state loses 

stability. These steady states do not exist at the same time and 

it becomes possible to build a system that is stable for any 

change in uncertain parameters. 
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