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Abstract – Via an idealizing approach, due to Gibbs, it is 

discussed a mathematical model of surface electrostatics in case of a 

technologically manipulated interface. The surface distribution of the 

electric potential is effectively found to be examined the role of 

functional nano-roughnesses. 

Index Terms – heterogeneous systems, transmission problems. 

1.  Introduction 

We propose in the present study a model covering actually 

a large class of heterogeneous systems. The model is applied 

here to electrostatics of air-crystal (or gas-crystal) material 

systems, which contain a separating semiconductor surface 

(interface). The separating folio is produced by technological 

annealing, resulting in functional step nano-roughnesses. As 

known, the importance of the surface roughnesses, 

consequently – of the interface electrostatics, is motivated 

from actual technological questions (e.g. [5], [7]), 

corresponding to the contemporary growing usage of various 

electronic devices. The governing technological role of the 

interface (for the whole compound system, of given electronic 

device), especially that of the relevant nano-roughness, yields 

the effective determination of the interface electric potential as 

a key problem. Note additionally the necessity to examine 

electrostatic interactions of the roughness segments and the 

surface charge density, via distributions nonlinearly depending 

on the electric potential. For solving the main problems we 

introduce below an idealized, according to Gibbs ([6]), 

heterogeneous system.  The Gibbs idealizing approach treats 

the thin transitional layers as interfaces, under a principle 

called the excesses one ([6], see also [10]). Thus, taking 

initially a 3D air-crystal material system, with a thin midmost 

transition layer, of a semiconductor matter, we come to the 

following Gibbs type of idealization. The full system is 

supposed to consist in two bulk phases – of upper (air or gas) 

and lower (crystal) media, and a flat semiconducting interface, 

with a distribution of fine technological surface roughnesses, 

shaped as a straight line of defects (as a compatible 

illustration, see Fig. 1, [4]). Such interface structure is 

essentially supported by real effects, experimentally 

established under annealing of InP(110) samples at 

temperatures up to 480 K, followed by heat normalizing ([5], 

[7]). More over, a credible visual result of [5] and [7] (see Fig. 

2, [7]), established by scanning tunneling microscopy of the 

surface crystal layer, completely confirms the model-

construction derived from the Gibbs theory. Next, having 

settled the Gibbs framework, we have introduced a typical 3-2-

1 D heterogeneous material system, { }G B S B     , 

with S S l S    . Certainly, the system incorporates 

variety of homogeneous material components, of three 

different dimensions: B
 and B

 enter as homogeneous bulk 

phases, but of quite differing electrostatics (they are 

respectively of air, considered here as vacuum, and crystal); 

S  is the interface, which enters as an autonomous 2D 

semiconductor folio separating the bulk phases and consisting  

in two electrostatic equivalent and homogeneous halves, S 
, 

S 
. And the roughnesses composition enters in the idealized 

system G
 as a detached material contour l  – a straight line, 

splitting S   into the surface phases S 
, S 

. Contour l  plays 

the role of an intrinsic 1D phase (of electrostatic autonomous 

and homogeneous matter). For a technically convenient 

presentation of system G
, let us introduce a Cartesian 

( , , )x y z - coordinate system, with line l  as the Oy axis and 

surface 0z   as the interface of G
. The vacuum and crystal 

bulk phases ( B
 and B

) fill the upper and lower semi-

spaces, 0z   and 0z  , respectively, and for the surface 

phases we have: S 
( 0, 0x z  ) and  S 

( 0, 0x z  ).   

As the electric potential ( , , )u u x y z  is the key quantity 

determining electrostatics, our model goals to express it for the 

whole vacuum-surface-crystal heterogeneous system. Due to 

the key role of the technological roughnesses, it is of special 

interest to find first of all the surface potential distribution 

( , , 0)u x y z   and, secondly, its impact on the bulk 

distributions ( , , 0)u x y z   in the vacuum and crystal 

phases. The said point of view is the motivation to accent here 

on finding effective expressions of the interface potential. 

Note now the homogeneity of heterogeneous system G
 

on the y – direction, because of the assumed homogeneity of 

the 1D phase l . Therefore both, the electric potential 
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( , , )u u x y z  and vector ( , , )x y zD D , of the electric 

induction ([9]), will actually depend on ,x z , i.e. 

( , )u u x z  and ( , )x zD D . (Vector D  is also known as 

electric displacement, e.g. [8].) Here we propose interface 

electrostatics with a charge density nonlinearly modeled, 

regarding a specific modulation ( ,0)Ku x  of potential 

( ,0)u x . The modulated potential ( ,0)Ku x  enables a linear 

treatment of the problem for determining the surface potential. 

Thus a kind of pseudolinear electrostatics is proposed and 

studied. Concerning Ku  modulation, let us shortly accent on 

the assumed structure of the surface charge density. We deal 

below with a quadratic type of dependence on Ku , expressed 

by the weighted x – mean value [ ]K u , as follows:  

 (0.1)  [ ] [ ]( ) ( , )
2

K K

K
u u z u x z dx 





     ; 

 (0.2)  ( , ) ( ) [ ]( )K K K Ku u x z x u z     

( ( ) exp( | |)K x K x   ; K  is a positive parameter.  

The usage of potential Ku  in the nonlinear relations, instead 

of u , simplifies the technical procedures saving well enough 

the essence of the exact potential distribution. This is 

essentially supported by the asymptotic equivalence: 

( ) / ( ) ~ ( , ) / ( ) ( , )
2

L K L K

K
u u x z dx x dx u x z dx 

  

  

    

( 1L  ), 

where ( ) ( ) ( ) (1 / 2 ). ( , )
L

L L
L

u u z L u x z dx


   , by 

analogy – for ( )K L . Note that potential Ku  has a compatible 

impact with that of u  because of the identical averages:  

[ ] [ ]K K Ku u  .  

Using the quadratic expression 
2 2 4 2

0( / 2)s s s sk u k u    , 

with 
2u  replaced by 

2

Ku , for the interface charges, we 

introduce the following relations as the basic form of our 

model (a derivation sketch is given in Sect. 2 , below): 

(1.1) 2 2 4 2

0( ,0) ( ,0) . ( / 2)z z

s s s s s s KD x D x k u k u       D  

( 0, 0z x  ); 

(1.2)         
, ,x x

s s l
 
 D D . 

Above s  is the nabla operator, tangential (to 0z  ); 

0
( ,0) lim ( , )z z

z
D x D x z


 , by analogy – for ( ,0)zD x , 

where 
zD  is the normal to 0z   component of vector D , 

and the limits are supposed finite, x ; ( .0)s xD D  and 

.s s D  is the formal scalar product of vectors (nabla and 

sD ), i.e. .s s sdiv D D ;  
,x

s


D ,  

,x

s


D  are the 

relevant limits (also assumed finite), at 0x  , for the normal 

to l  (and coplanar to 0z  ) component  
l

sD  of Ds. 

Parameters ,s sk   are the main electrostatic characteristics to 

the surface-matter; here they enter as conventional positive 

constants. The material sense of  sk  is present by the quantity 

1 1/s sk k  , called surface screening length (by analogy to 

the bulk one, 
1 1/b bk k  , known from the space 

electrostatics e.g. [10]). Parameter s  is the surface dielectric 

permittivity (by analogy to the bulk one, b ). Condition (1.2) 

is based on the key line (point) characteristic l , 

where 0/l l   , with l  - the electric charge density 

upon the line (point) phase; 0 8.85 /pF m   is the known 

absolute dielectric permitivity.  

The model yields the basic mathematical problem for 

existence of solutions ( , )s uD  to system (1.1), (1.2). For the 

analysis, a surface transmission problem is solved, in Sect. 2, 

regarding potential ( ,0)u x . It is done by reducing to a 

nonlinear boundary integral equation, which admits effective 

resolving. Finding then an explicit expression for the surface 

potential, we estimate, in concluding remarks (Sect. 3), the 

effects of the nonlinear surface distribution of charges. 

2.  Elements of modelling, surface transmission problems  
and integral equations. 

The key tool for description of electrostatic phenomena in 

complex media relates to the Maxwell system (in case of 

dielectrics, e.g. [9]): 

(2.1)    a)     . D  ;  b) D  0 u    .   a) . D  ;  b) D  0 u    . 

Above   is the charge density;   is the relative dielectric 

permitivity for the relevant part of the medium ( b   , at 

0z  ; b   , at 0z  , with 1b
  , from the vacuum 

assumption; s  , at 0, 0z x  ). Equations (2.1) hold 

for the total (3D) system and, as known, potential u is a 

continuous function of ( , , )x y z , in spite of the various 

material phases. Because of the presumed complex 

heterogeneity of G
, we shall apply a two-leveled scheme of 

singular decompositions to D  and  , in reworking of the 

Maxwell system.  Thus we express the electrostatic field 
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( , )uD  of system G
 by decompositions in two levels (bulk 

and surface), of the following type: 

(2.2)  a) ( )b b s z            ; 

       b) s s s s s l l            ; 

(2.3)    ( ) ( ) ( ) ( ) ( )b b sz z z       D D D D ; 

(2.4)   ( ) ( )s s s s s l l       D D D D . 

Above ( )z
/ ( )z

 are respectively the Heaviside 

forward/backward functions (i.e. ( ) 1z  , at 0z  , 

( ) 0z  , at 0z  , ( ) ( )z z    ) and ( )z  is the 

Dirac delta-function, supported at 0z  ; 1s
  , at 

0z  , 0x   and 0s
  , at 0z  , 0x  , by analogy: 

1s
  , at 0z  , 0x   and 0s

  , at 0z  , 0x  ; 

next, l  is delta-function, supported on the line 

: 0 ( 0)l x z  , and we shall also use the notation ( )x , 

for l . Relations (2.2) – (2.4) present an essential 

generalization, in two levels (already introduced in [10]), of 

the Bedeoux-Vlieger ([3]) step formalism. Vector sD  is a 

function of x , assumed in the form of (2.4), with vector 

components ( )s


D , ( )s


D , having finite and different limit 

values at 0x  . Analogous presumptions hold to scalar 

functions ( )s s x    (considered as at least continuous 

respectively at 0x   and 0x  ); l , presented in (2.2.b), 

is a scalar and Dl (see (2.4)) is a vector. In (2.2) we shall 

assume in general nonlinear dependences of the bulk and 

surfaces charge densities (   and s ) on the electric potential, 

i.e. [ ]( , )u x z  , [ ]( )s s u x  . For a motivation we 

use certain arguments from a known Fermi-Dirac distribution 

(e.g. [2]) and analogies with the Boltzmann one, via the Gouy-

Chapmann theory (e.g. [8]). Substituting now from (2.2) – (2.4) 

into electrostatic equations (2.1), we get, for the bulk phases: 

(2.5.a)  .( ) 0b

 D  ( 0z  ), .( ) = [ ]b b u  D  ( 0z  ); 

(2.5.b)  0( ) . ( 0)b b u z     D ,  

             0( ) . ( 0)b b u z     D .    

And for the interface we find: 

(2.6)    ( ,0) ( ,0) . [ ]z z

s s sD x D x u   D  

             ( 0, 0z x  );        

(2.7)       
, ,x x

s s l
 
 D D , 

where, for vector sD  it holds 

(2.8)     0 . ( 0, 0)s s su z x     D . 

Calculating the results of above substituting, let us note that 

the normal to 0z   component 
z

sD  (of vector sD ) vanishes 

( 0z

sD  ), i.e. sD  presents a flat (planar) vector field (see 

e.g. [10] for details).  

Concerning the charge density terms [ ]b u 
, [ ]s u , in 

(2.5.a), (2.6), for the vacuum-surface-crystal system G
 we 

have to forecast a relation in the form of [ ]b u    (for the 

crystal phase), because of the mentioned Fermi-Dirac and 

Boltzmann distributions. Presuming a total electro-neutrality 

of the considered material system, we shall take into account 

first of all general charge distribution laws in the following 

form, respectively for the crystal bulk and surface phases:  

(2.9)  
2

0[exp( ) 1]k u     , 

          
2

0[exp( ) 1]s s sk u     .     

The potential-magnitudes can be however assumed relatively 

small, and we can deal with truncations of the infinite sums 

(presenting [ ]u  and [ ]s u  from (2.9)), i.e. 

2 2 4 2 3 6 3/ 2! / 3!s sk u k u k u        and 

2 2 4 2 3 6 3/ 2! / 3!s s s s s sk u k u k u         , possibly closer 

to the linear terms. Thus we chose linear approximation, 
2

1 0[ ]u k u    , for [ ]u  but quadratic one, 

2 2 4 2

,2 0[ ] ( / 2!)s s s s su k u k u      , for [ ]s u , because 

of certain dominating role of the interface. Additionally, in the 

quadratic term 
2 4 2 / 2!s sk u  of ,2[ ]s u  we change the factor 

2u   into the similar one of 
2

Ku  (recall the comments in Sect. 

1). Thus we shall deal with the modified density of surface 

charges, as follows: 

(2.10)     
, 2 2 4 2

2 0[ ] ( / 2)K s

s s s s Ku k u k u      .   
, 2 2 4 2

2 0[ ] ( / 2)K s

s s s s Ku k u k u      . 

On the linear (1D) phase, the contour l Oy , we 

assume 0l l   , with l  – given constant. Substituting 

now [ ]s u  with 
,

2 [ ]K s u  in (2.6), from (2.6), (2.7) we find 

the pseudolinear model (1.1), (1.2) of interface electrostatics 

for system G
.  
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For the analysis of problem (1.1), (1.2) we shall rework the 

terms ( ,0) ( ,0)z zD x D x   and    
, ,x x

s s

 
D D : from 

(2.5.b) and (2.8) it follows respectively that  

0( ,0) ( , 0)z

b zD x u x  

      

and  
,

0 ( 0,0)
x

s s xu 

  D . Thus the mentioned 

differences yield respectively the following jump type of 

terms: 

[ ] [ ]( ,0)b z b zu u x    , 

 With 

 [ ]( ,0) ( , 0) ( , 0)b z b z b zu x u x u x         (at 1b
  ), 

and [ ( 0,0) ( 0,0)]s x xu u    . Then problem (1.1), (1.2) 

takes the form:  

(2.11)        
2 2 4 2[ ] / 2b z s xx s s s s Ku u k u k u       , 

        0z  , 0x  ;              

(2.12)   [ ( 0,0) ( 0,0)]s x x lu u      . 

Above , ,x z xxu u u  are first or second order derivatives 

regarding the relevant variable and 

0
( 0,0) lim ( ,0)x x

x
u u x


  , respectively at 0, 0x x  . For 

next reworking denote by ( )x  the surface values ( ,0)u x  

and use that (2.5) yield the Laplace and Helmholtz equations 
2 0 ( 0)u z    and 

2 2 ( 0)bu k u z   , for the space 

potential ( , )u x z  (under boundary condition 

( ,0) ( )u x x ). Now we can express, by the x- Fourier 

transforms of ( , )u x z  and ( )x , the jump term [ ]b zu  as 

0[ ]( ) [ ]b zu L    . Here 
0 0: [ ]L L   is the linear 

operator, such that 
0 ˆ( [ ])( ) ( ) ( )L       F , for the 

Fourier transform 
0( [ ])L F  of function 

0[ ]( )L x , where 

2 2( ) b bk       , b b   , b bk k  . This way 

we present (1.1), (1.2) as the following problem, for the 

surface potential ( )x . 

(2.13)   
0 2 2 4 2[ ] / 2s s s s s KL " k k         , 

0, 0z x  ; 

(2.14)   [ '( 0) '( 0)]s l        , 0, 0z x  . 

Above ( ) [ ]. ( )K K K Kx x       is the K-modulation 

of potential   and  ,   are respectively the first and 

second order derivative of function  . 

Now the essential step consists in solving problem (2.13), 

(2.14). Given a solution )(x , let us consider the auxiliary 

equation (directly suggested by relation (2.13)): 

(2.15)  
2 [ ]( ) 0s Kw k w F x      

(
0 4 2[ ] [ ] / / 2K s s s KF L k      ), 0x  . 

Because function ( )w x  is a solution of (2.15), by the 

argument of the general solution formula, we get the 

expression: 

(2.16)    

exp( | |) exp( | |) [ ] / 2s s K sc k x k F k       . 

Here 1 2F F  is the known convolution of two (generalized) 

functions (e.g. [1]) and c
 is a constant depending on  . 

Substituting by (2.16) in condition (2.14), constant c
 can be 

determined as / 2l s sc k    and the starting form of the 

needed integral equation is found: 

(2.17) 
0 3 2[ ]

exp( | |) exp( | |)
2 2 4

l s s K
s s

s s s s

L k
k x k

k k

   


 

 
       

 
 

Reworking (2.17) and using the auxiliary function ( )s x , 

with 

  
2 2 1

0

1
( ) [ ( ) ( )] cos( )s

s sx k x d      



   ,    

we establish the following compact expression for the integral 

equation: 

(2.18)    
2 4 2 / 2s s

l s s Kk        . 

3. Concluding remarks. 

Beginning with the basic effective formula for the interface 

potential, we will accent here on the next three conclusions. 

(i) It holds the following explicit formula for the surface 

potential  : 

(3.1)   
,( ) ( ) ( )s b l

l l sx x x      , 

where  

,

2 2 2 2 2

,0

1 cos( )
( )

[ ( ) ( )][1 ( / 4 ) ]

b l

s

s s l b s

x d
x

k k

 

      



 
    

To comment this assertion let us integrate equality (2.18) (for 

a given solution ( )x ): we find the simple relation   
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2 4 2 1/ 8 0s s s lK k I I I     , with ( )I x dx 




  , 

 ( )s

sI x dx




  , and use that 
1 2

s b b s sI k k    .  Then 

we chose 
,b l

sK K , where 
, 2 1

,2b l

s b s lK k   , 

2

, 1 /b s b b s sk k k   .  At 
,b l

sK K  the above equation 

(regarding I )  yields the following uniquely determined 

value: 
22 / ( )l b b s sI k k     . And, for the modulated 

potential K  (by relation ( ) [ ]. ( )K K Kx x    ), we then 

find: 

(3.2)      
1 2

,( ) 2 ( )K s s b s Kx k k x     (
,b l

sK K ). 

To prepare the substitution from (3.2) into (2.18), note 

firstly that 
2

2K K   and denote afterwards 

,

2( ) ( )b l

s Kx x   (at 
,b l

sK K ); i.e. 

, ,( ) exp( 2 | |)b l b l

s sx K x   .  Now from (2.18) and (3.2) 

we get: 
2 ,

,2s s b l

l b s sk       . By reworking the 

convolution 
,s b l

s  , the result can be conveniently 

expressed via function 
,b l

s  in the form of (3.1). 

(ii) The impact of the modulated surface potential is 

comparable with that of the leading term ( )s

l x  , at low 

charged anomaly contour.   

For a comment of the formulated effect, let us firstly note 

that the term ( )s

l x   in (3.1) presents the surface potential 

distribution via the linear theory – when relation (1.1) of the 

basic model does not includes the modulating factor 
2

Ku . Thus 

the term  
, ( )b l

l s x   should be considered as a perturbation 

produced by the squared modulation 
2

Ku . A comparison of 

potentials ( )s x  and 
, ( )b l

s x  follows, from the above given 

integral formulas (for
s , 

,b l

s ), by the estimate: 

 (3.3)           
, 2

,| ( ) ( ) | / 8s b l

s l s b sx x k     (
1x R ). 

The estimate clearly shows that potentials ( )s x , 

, ( )b l

s x  take arbitrary small magnitude of difference at each 

of the cases: 1l   (with arbitrary fixed, positive 

, , ,s s b bk k  ); 
2

s s b bk k   ( 0l  , fixed).  

(iii) At extreme magnitude of contour charges, the effect of 

the modulated surface potential is either identical with that of 

the leading term 
s

l  or negligible, on the phase contour of 

technological anomalies. 

For the comparison on the phase contour l  we have to 

consider the values of (0)s , 
, (0)b l

s , using the key 

relation: 

 (3.4)    
, 2 , 4

,(0) (0) /16b l s b l

s l s b sC k     . 

Here 

2
,

2 2 2 2 2

,0
[ ( ) ( )][1 ( / 4 ) ]

b l

s

s s l b s

d
C

k k

 

     




   . 

Relation (3.4) now directly shows that the rest term 
2 , 4

,/16b l

l s b sC k   tends to zero, for l  getting infinitely 

small, i.e. 
, (0) (0)b l s

s   , at 1l  . On the other hand, 

at l   it follows that 
2 , 4

,/16b l

l s b sC k   is tending 

to (0)s . Thus the specific effect appears : 
, (0)b l

s  is 

vanishing, at 1l  . 
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