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    Abstract – In this paper, we introduce the type V matching 

scheme and the corresponding type V algorithm of multidimensional 

approximate reasoning with given multidimensional input and 

multidimensional knowledge bases on strong Q-logic CQ. 

    Index Terms – Multidimensional approximate reasoning, 

Multidimensional formula mass, Multidimensional knowledge mass, 

Strong Q-logic. 

1.   Strong Q-logic CQ 

Define a similarity relation Q in the formula set )(SF  of 

classic propositional logic C = (C^, C*) so that for any 

formula  )(SFBA   it satisfies 

                             <A> →<B> = <A→B>, 

                              <A>∧<B> = <A∧B>, 

where 

             <A> →<B> = {A*→B*∣A*∈<A>, B*∈<B>}, 

             <A>∧<B> = {A*∧B*∣A*∈<A>, B*∈<B>}. 

(F(S), Q) is called strong Q-space and CQ = (C^, C*, Q) is 

called strong Q-logic. 

2.  Type V Multidimensional Approximate Reasoning  

Theorem 2.1  In strong Q-logic CQ, for any natural 

number m and any formula group )(,...,, 21 SFAAA m  , 

 mm AAAAAA  2121
. 

Proof    According to the definition of strong Q-logic, for 

all formulas )(, 21 SFAA  , we have  

 2121 AAAA . 

For natural number k and any formula group  

)(,,, 21 SFAAA k  , 

suppose 

 kk AAAAAA  2121
. 

Then we will prove that for natural number k+1 and any 

formula group )(,,...,, 121 SFAAAA kk 
, 
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In fact,  
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According to mathematic induction, for each natural number m 

and any formula group )(,,, 21 SFAAA m  ,  

       mm AAAAAA  2121
. 

      Obviously, the following converse theorem also exists. 

Theorem 2.2    CQ = (C^, C*, Q) is strong Q-logic if regular 

Q-logic CQ satisfies 

       mm AAAAAA  2121
 

for each natural number m and any formula group  

                        )(,,, 21 SFAAA m  . 

      Consider multidimensional approximate reasoning model 

in strong Q-logic CQ,                      
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that is    
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where  

   BAAA m21
 

 is called multidimensional knowledge;  

                 )(
**

2

*

1 SFAAA m    

is called multidimensional input; )(* SFB   is called output 

or approximate reasoning conclusion. 

      Suppose  

          ,,,,
*

2

*

21

*

1  mm AAAAAA   
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that is  

      .21

**

2

*

1  mm AAAAAA   

Then we say that multidimensional input  

                       **

2

*

1 mAAA    

can activate multidimensional knowledge  

                       .21 BAAA m    

Take  

                                     BB*  

as approximate reasoning conclusion, which is called 

multidimensional reasoning type V strong Q-solution with 

regard to multidimensional input **

2

*

1 mAAA    under 

multidimensional knowledge .21 BAAA m    

      If there exists an },,2,1{ mi   satisfying  

                                   ,
*

 ii AA  

that is  

       .21

**

2

*

1  mm AAAAAA   

It implies that multidimensional input  

                        **

2

*

1 mAAA    

can not activate multidimensional knowledge  

                     .21 BAAA m    

Hence, we do not care multidimensional input  

                        **

2

*

1 mAAA   . 

It demonstrates there is no type V strong Q-solution to 

multidimensional approximate reasoning with regard to 

multidimensional input  

**

2

*

1 mAAA    

under multidimensional knowledge 

.21 BAAA m    

      This algorithm is called multidimensional approximate 

reasoning type V strong Q-algorithm.  

Theorem 2.3    In strong Q-logic CQ, there exists a type V 

strong Q-solution of it with regard to multidimensional input  

                       **

2
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1 mAAA    

under multidimensional knowledge  

                     BAAA m  21
, 

if and only if  
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1  mm AAAAAA   

      Proof    According to the construction of strong Q-logic 

CQ, we know  

       mm AAAAAA  2121
, 

and because  

              mm AAAAAA
*

2

*

21

*

1 ,,,   

if and only if  

       mm AAAAAA  21

**

2

*

1
, 

so, there exists a type V strong Q-solution of multidimensional 

approximate reasoning with regards to multidimensional input  

                           **

2

*

1 mAAA    

under knowledge  

                       BAAA m  21
 

if and only if  

          .21
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2
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1  mm AAAAAA   

Theorem 2.4    In strong Q-logic CQ, if there exists a type V 

strong Q-solution *B  of multidimensional approximate 

reasoning with regard to multidimensional input  

                                  **

2
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under multidimensional knowledge  

                              BAAA m  21
, 

we have  

      BAAABAAA mm  21
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2
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1
, 

which implies the multidimensional knowledge 

                             ***

2
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1 BAAA m    

is Q-similar to multidimensional knowledge 

                              BAAA m  21
. 

      Proof      Because *B  is the type V strong Q-solution of 

multidimensional approximate reasoning with regard to 

multidimensional input  

                                  **

2
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1 mAAA    

under multidimensional knowledge  

                              BAAA m  21
, 

we have  

       BBAAAAAA mm
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that is  

 mm AAAAAA  21

**

2

*

1
 

and   BB* . But, because of the construction of strong Q-

logic CQ, we know  

      mm AAAAAA  2121
. 

So  

    BBAAAAAA mm

*

21
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2

*

1 , . 

Therefore  

 BAAABAAA mm  21

***

2

*

1
. 

And because of the construction of strong Q-logic CQ, we 

know  

 BAAABAAA mm  2121
. 

Therefore,  

 BAAABAAA mm  21

***

2
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1
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