
An Improved Hybrid SAT Solver for Bounded Model

Checking in Circuit Design*

Yuesheng Zhu, Deke Yu

Communication & Information Security Lab, Shenzhen Graduate School, Peking University, Shenzhen, China

zhuys@pkusz.edu.cn, yudeke@sz.pku.edu.cn

* The work described in this paper is supported by the “Shuang Bai Project”, the Research Program of Shenzhen, China.

Abstract – Model checking is one of main formal verification

methods that are used in the process of circuit design and verifica-

tion. However, there is a problem of state memory explosion in tradi-

tional model checking methods. Bounded model checking (BMC), in

which the Davis-Putnam-Logemann-Loveland (DPLL) algorithm

based Satisfiability (SAT) solver is used to verify the circuits, can

avoid this problem, whereas, its efficiency depends on the perfor-

mance of the solver. Hybrid SAT solver combines the advantages of

the completeness of DPLL and the fast solving property of stochastic

local search algorithm, e.g. WalkSAT, and is proved to be an effi-

cient improving way. However, it is noted that the noise parameter in

WalkSAT could affect the solver’s overall performance. In this pa-

per, an adaptive noise mechanism is proposed to integrate with the

hybrid algorithm framework to further improve the solver’s perfor-

mance. Our experimental results have shown that the designed hybrid

solver with adaptive noise performs well in BMC instances and some

other circuits.

Index Terms – BMC, SAT, DPLL, WalkSAT, adaptive noise

I. Introduction

Verification method is an important way to guarantee the

correctness of the circuits design. The traditional analog veri-

fication method is costly and incomplete. Formal verification

is complete and can be used in the early stage of system design

so that the design cost can be reduced greatly.

Model checking is a general formal verification method in

hardware design. With the increase scale of systems, the state

memory explosion problem limits the application of traditional

model checking methods, e.g. binary decision diagram. Thus,

to overcome this problem, the model of bounded model check-

ing (BMC) [1] is developed and proved that it can be reduced

to the satisfiability problem (SAT) in polynomial time. Then,

the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [2]

based SAT solver can solve the BMC more efficiently com-

pared with traditional methods and overcome the problem of

state memory explosion. However, DPLL-based SAT solvers,

e.g. zChaff [3] and MiniSAT [4], are time-consuming in large

instances, and even exponential time in worst cases. Stochastic

local search algorithm (SLS) is a term of a set of local search

algorithms, e.g. DLM [5] and WalkSAT [6]. SLS-based SAT

solvers can quickly find solutions for a SAT problem, but the

solvers can’t prove the problem is unsatisfiability (UNSAT) if

they stop without a SAT solution. Ref. [7] mentions that a hy-

brid SAT solver based on DPLL and SLS is an efficient im-

proving way. Ref. [8] dynamically calls WalkSAT as a heuris-

tic in some nodes of branching decisions during DPLL based

on some conditional probability factor. Ref. [9] presents a

general HyBrid-Incremental-SAT solver (HBISAT) frame-

work. In this framework, SLS is used to identify a subset of

clauses to be passed to DPLL through an incremental inter-

face. In addition, the solution obtained by DPLL on the subset

of clauses is fed back to SLS to jump over any locally optimal

points. Ref. [10] adds circuit observability [11] into HBISAT.

This method is much more efficient for large and hard circuits

than other solvers. DLM & MiniSAT (DM) [12] takes the ap-

proximation solution which is obtained by DLM as an initial

input for DPLL, guides DPLL to search the subspace that the

approximation solution lies first.

In this paper, firstly, based on [12], another hybrid solver

is implemented by replace DLM with WalkSAT, which is

called WM for short. Secondly, it is noted that the noise para-

meter in WalkSAT, like the Lagrangian parameter in DLM,

affects the overall performance of the hybrid solver’s greatly

no matter for the same instance or different instances. So with

the progress of WalkSAT, an Adaptive-Noise-Hybrid-SAT

solver (ANHSAT) is implemented by integrating the adaptive

noise mechanism [13] into the hybrid algorithm of WM to

further improve the solver’s overall performance.

II. Preliminaries

A. Bounded Model Checking

BMC is proposed in [1], and the model of the problem can

be described as follows:

Given the finite state machine (FSM) M, the task is to

check whether M satisfies a temporal property P in all paths

with length less to some bound k. The general structure of

BMC invariant formula is following:
1

0 0 0((, 1)) ()k k
ii iI i i P . (1)

Where I0 is the initial state of FSM, ρ(i,i+1) is a formula

representing the transition between cycles i and i+1, and Pi is

the property in cycle i. It is not hard to see that (1) can be SAT

if and only if there is a reachable state in cycle i which contra-

dicts the property Pi. Otherwise, M satisfies all P for every

path length with a large enough k. These can be checked by a

SAT solver.

B. The Implement of DPLL

DPLL is first proposed in [2], although it has a history of

more than 60 years, it is still the core of most complete SAT

solvers, e.g. zChaff, MiniSAT and their variants. DPLL is

International Conference on Computer, Networks and Communication Engineering (ICCNCE 2013)

© 2013. The authors - Published by Atlantis Press 282

mainly consisted of three parts: branching decision, Boolean

Constraint Propagation (BCP), and conflict resolving, other

heuristic methods could be included into these three parts. The

pseudo-code of DPLL is listed in TABLE I. Branching deci-

sion consists of variable selection and polarity decision. BCP

checks if any other variable assignments may be implied or a

conflict has been encountered under current assignments. Con-

flict resolving contains conflict analysis, learning, etc.

C. The Implement of WalkSAT

WalkSAT is proposed in [6], the pseudo-code of the algo-

rithm is listed in TABLE II. There are three parameters which

can be tuned in the algorithm: MAX-TRIES, MAX-FLIPS, and

noise parameter p. At the beginning of the algorithm, a random

truth assignment is generated to every variable. From there, it

takes incremental steps in the space of complete assignments,

flips the value of one variable at a time. If the current assign-

ment satisfies the formula, then the algorithm returns SAT;

otherwise, the algorithm will randomly pick an unsatisfied

clause and choose a variable from the clause to flip its polarity

with the probability of noise parameter p. After reaching MAX-

FLIPS, WalkSAT will restart by another random assignment.

If the MAX-TRIES threshold is also reached without obtaining

a solution for the problem, the algorithm will stop. However,

at this situation the algorithm can’t prove that the solution

doesn’t exist, so it is incomplete.

TABLE I DPLL Algorithm

define DPLL

begin

 while (true)

 if (!decide()) //branching decision

 return SAT

 while (!bcp()) //BCP

 if (!ResolveConflict()) //conflict resolving

 return UNSAT

end

define RosolveConflict()

begin

 d = most recent decision not tried both ways

 if (d == null) return false //no such d is found

 flip the value of d

 mark d as tried both ways

 undo any invalidated implications

 return true

end

TABLE II WalkSAT Algorithm

define WalkSAT

begin

for i = 1 to MAX-TRIES

 T = a randomly generated truth assignment

 for j = 1 to MAX-FLIPS

 if (T satisfies the formula) then return SAT

 pick an unsatisfied clause C

 v = choose a variable randomly in C with probability p

 T = flip the assignment of v in T

 end for

 end for

 return “no satisfying assignment found”

end

III. Our Approach

TABLE III shows a set of experimental data which is ob-

tained via MiniSAT by setting the default polarity decision

order: All True, All False, and Random, which means once a

variable is selected, this polarity order will be first assigned to

the variable before BCP. It can be inferred from TABLE III

that different polarity decision strategies have a great effect on

the performance of the solver for different instances. This is

because different polarity decision will guide the decision tree

to different directions and form a different search tree. DM

[12] uses DLM to generate an approximation solution and uses

this solution to guide the polarity decision by setting the as-

signment in the approximation solution as the default polarity

for the choosing variable.

In our work, since WalkSAT is another recognized SLS

algorithm and could be better than DLM, it is chosen as the

SLS part in the hybrid solver which is called WM for short. As

is mentioned before, there are three parameters which can be

tuned in WalkSAT. The noise parameter p has a major impact

on the performance of WalkSAT, and the other two parameters

have little or no impact on the behavior of WalkSAT [13].

After implementing WM, we find the noise parameter in

WalkSAT could also affect the hybrid solver’s overall perfor-

mance in a great way which could be inferred from Fig. 1.

There are three types of information that can be potential-

ly used to adjust the noise p:

(1) Background knowledge provided by the algorithm de-

signer including theoretical and empirical knowledge, this may

help others have an insight into the algorithm’s behavior;

(2) Syntactic information about the problem instance, e.g.

the number of clauses and variables, the length of clauses;

(3) Information collected over the run of the algorithm,

including information about the search space positions and

objective function values encountered over the search process.

Considering these three types of information, the adaptive

noise mechanism which is proposed in [13] is integrating into

the algorithm framework of WM to further improve the per-

formance of it. The adaptive noise mechanism could be de-

scribed as follows:

At the beginning of the search process, let noise be zero,

this would typically lead to a series of rapid improvements in

the objective function value followed by local optima (unless a

solution to the given problem is found). In this situation, the

noise value should be increased. If this increment is not suffi-

cient to escape from the local optima after a certain number of

steps, the noise value will be further increased. Ultimately, the

noise value should be high enough that escape the local opti-

TABLE III Polarity Testing

Instance # of variables # of clauses Polarity CPU Time (s)

bmc-ibm-12

39598

194778

All True 4.6363

All False 5.3581

Random 4.2213

bmc-ibm-13

13215

65728

All True 9.1846

All False 3.4745

Random 4.2135

283

Fig. 1 The effect of the noise parameter on WM’s overall performance

ma, at which point, the noise can be gradually decreased until

happens to some next local optima or a solution of the given

problem is found.

The above description can be formulated as following

formulas:

(1) If the objective function value has not been improved

over the last θ * m search steps, where m is the number of

clauses of the given problem and θ is equal to 1/6, then the

noise p will increase as:

(1)p p p . (2)

(2) Otherwise, for the decrement situation, p should de-

crease as:

/ 2p p p . (3)

Where φ above is equal to 1/5.

Although this adaptive noise mechanism introduces two

additional parameters θ and φ to the algorithm, it is confirmed

in [14] that these two parameters need not be tuned for each

problem instance to achieve good performance for WalkSAT.

Thus, by integrating the adaptive noise mechanism into

WM, ANHSAT is implemented and no parameter has to be

manually tuned to solve a new problem. The flowchart of

ANHSAT is shown in Fig. 2. The algorithm will first run the

adaptive noise WalkSAT and return a SAT solution or an ap-

proximation solution of the problem. If not return SAT, the

approximation solution obtained by the adaptive noise Walk-

SAT will be used as a heuristic polarity decision in DPLL.

Each time when the DPLL algorithm selects an unassigned

branching, the polarity decision module will first branch the

polarity subspace in the approximation solution, and then go

on other DPLL procedures. Obviously, ANHSAT is a com-

plete solver. Due to limitations on space, the proof will not be

given here.

IV. Experimental Results

ANHSAT is implemented with the following hardware

and software environment:

 Hardware: host machine with Win7 platform, Intel

Core2 Duo P8400 2.26GHz 2.27GHz CPU and 4GB RAM;

virtual machine with Fedora15 in VMware Workstation 9.0,

1GB RAM and single core CPU;

 Software: WalkSAT v50, MiniSAT 2.2 and gcc 4.6.3.

 In order to reduce the overhead of WalkSAT in ANH-

SAT, MAX-TRIES is set equal to 10 and MAX-FLIPS is equal

to 1000. This setting can make the runtime of WalkSAT be

negligible comparing with the process of DPLL. MiniSAT is

chosen as the DPLL core. ANHSAT is compared with zChaff

2007, MiniSAT 2.2 and WM with static noise p equals 1/2

which may be good enough for many instances. The bmc se-

ries benchmarks are taken from SATLIB and others are circuit

instances from the industrial instances of SAT Competition

2002 (see TABLE IV). Particularly, the bmc and cnt series are

all BMC instances.

DPLL Algorithm
WalkSAT with adaptive noise

branching

decision

input the problem

instance

find a

solution?

SAT

get an

approximation

solution

Y=[y1,y2,…,yn]

No

Yes

branching

selection，choose

variable xi

polarity decision,

let xi = yi

BCP

conflict？

UNSAT

all variables are

assigned?

No

SAT

Yes

No

conflict

analysis

root level

conflict？

Yes

Yes

No

backtracking

Fig. 2 The flowchart of ANHSAT

284

 The CPU Time data are obtained by calculating the mean

value from running all instances more than 10 times. Speedup I

and Speedup II are calculated by CPU Time with following

formulas respectively:

 () / *100%Speedup I MiniSAT ANHSAT MiniSAT . (4)

 () / *100%Speedup II WM ANHSAT WM . (5)

The bold numbers in TABLE IV represent the best perfor-

mance. It can be noted from TABLE IV that ANHSAT is bet-

ter than MiniSAT and WM in all instances, zChaff only per-

forms well in some really simple instances. Moreover, we find

that the performance of ANHSAT is outstanding in most BMC

instances and some large and hard circuits.

V. Conclusions

BMC model is a variant of model checking widely used in

circuit design and can be solved by SAT solver. Combining

the advantages of DPLL and WalkSAT, a hybrid SAT solver

ANHSAT is implemented. Different from the algorithm

framework of DM, ANHSAT consists of adaptive noise me-

chanism to further improve the solver’s performance. Our ex-

perimental results have demonstrated that ANHSAT is better

than MiniSAT and WM with static noise mechanism and can

efficiently solve the problems of BMC and some other large

and hard circuits.

References

[1] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic Model

Checking without BDDs,” Proc. of the Workshop on Tools and Algo-

rithms for the Construction and Analysis of Systems, pp. 193-297, 1999.

[2] M. Davis, G. Logemann, and D. Loveland, “A Machine Program for

Theorem-Proving,” Communications of the ACM, vol. 5, no. 7, pp. 394-

397, 1962.

[3] Y. S. Mahajan, Z. Fu, and S. Malik, “Zchaff2004: An Efficient SAT

Solver,” Proc. of the 7th International Conference on Theory and Appli-

cations of Satisfiability Testing, pp. 360-375, 2004.

[4] N. Eén, N. Sörensson, “An Extensible SAT-Solver,” Proc. of the 6th

International Conference on Theory and Applications of Satisfiability

Testing, pp. 502-518, 2003.

[5] Y. Shang, and B. W. Wah, “A Discrete Lagrangian-Based Global-Search

Method for Solving Satisfiability Problems,” Global Optimization, vol.

12, no. 1, pp. 61-99, 1998.

[6] B. Selman, H. Kautz, and B. Cohen, “Noise Strategies for Improving

Local Search,” Proc. of the 12th National Conference on Artificial Intel-

ligence, pp. 337-343, 1994.

[7] H. Kautz, and B. Selman, “The State of SAT,” Discrete Applied Mathe-

matics, vol. 155, no. 12, pp. 1514-1524, 2007.

[8] B. Ferris, and J. Froehlich, “WalkSAT as An Informed Heuristic to DPLL

in SAT Solving,” Department of Computer Science, University of Wash-

ington, Seattle, 2004.

[9] L. Fang, and M. S. Hsiao, “A New Hybrid Solution to Boost SAT Solver

Performance,” Proc. of the Design, Automation and Test in Europe Con-

ference and Exhibition, pp.1-6, 2007.

[10] X. Wang, H. Wang, and G. Ma, “Hybrid SAT Solver Considering Circuit

Observability,” Proc. of the 9th International Conference on Young

Computer Scientists, pp. 65-70, 2008.

[11] Z. Fu, Y. Yu, and S. Malik, “Considering Circuit Observability Don’t

Cares in CNF Satisfiability,” Proc. of the Design, Automation and Test

in Europe Conference and Exhibition, pp. 1108-1113, 2005.

[12] M. Jing, D. Zhou, P. Tang, and X. Zhou, “A Heuristic Complete Algo-

rithm for SAT Problem by Approximation Solution,” Computer Aided

Design and Computer Graphics (Chinese), vol. 19, no. 9, pp. 1184-1189,

2007.

[13] H. Hoos, “An Adaptive Noise Mechanism for WalkSAT,” Proc. of the

18th National Conference on Artificial Intelligence, pp. 655-660, 2002.

[14] C. Li, W. Wei, and H. Zhang, “Combing Adaptive Noise and Look-

Ahead in Local Search for SAT,” Proc. of the 10th International Confe-

rence on Theory and Applications of Satisfiability Testing, pp. 121-133,

2007.

TABLE IV Benchmark Testing Results

Instance # of variables # of clauses CPU Time (s) Speedup I

(%)

Speedup II

(%) zChaff 2007 MiniSAT 2.2 WM ANHSAT

bmc-ibm-1 9685 55870 0.3918 0.065 0.056 0.044 32.31 21.43

bmc-ibm-3 14930 72106 0.0229 0.1929 0.1626 0.1404 27.22 13.65

bmc-ibm-4 28161 139716 0.7019 0.212 0.1791 0.1548 26.98 13.57

bmc-ibm-6 51639 368352 1.0988 0.296 0.2427 0.2334 21.15 3.83

bmc-galileo-8 58074 294821 1.6358 0.4219 0.2624 0.174 58.76 33.69

bmc-galileo-9 63624 326999 1.2158 0.268 0.282 0.2455 8.40 12.94

bmc-ibm-10 59056 323700 6.6160 0.9749 0.7866 0.6517 33.15 17.15

bmc-ibm-11 32109 150027 8.5947 0.4559 0.4683 0.3485 23.56 25.58

bmc-ibm-12 39598 194778 18.3682 4.3243 3.1831 2.8991 32.96 26.39

bmc-ibm-13 13215 65728 2.5346 4.0624 2.8397 2.162 46.78 30.10

cnt08 4089 13531 6.419 0.9968 0.8742 0.7911 20.64 9.51

cnt09 9207 30678 34.0848 4.6143 4.7058 3.4207 25.87 27.31

ssa-sat-1 4824 48233 0.084 1.4708 0.5339 0.308 79.06 42.31

ca128 2282 6586 0.4429 0.154 0.133 0.109 29.22 18.05

ca256 4584 13236 1.8677 0.4929 0.3789 0.3229 34.49 14.78

cache_05 113080 431939 1.9297 18.2832 17.9395 12.1415 33.59 32.32

comb2 31933 112462 224.324 63.5855 69.7104 54.6064 14.12 21.67

comb3 4774 16331 >300 55.4536 64.2392 48.5736 12.41 24.39

f2clk_30 20458 59559 82.3025 16.0146 14.1691 12.4291 22.39 12.28

f2clk_40 27568 80439 >300 184.83 155.398 147.56 20.16 5.04

fifo8_100 64762 176313 10.6884 7.5479 6.9365 4.6207 38.78 33.39

fifo8_200 129762 353513 170.618 38.7761 38.8881 36.0705 6.98 7.25

fifo8_300 194762 530713 >300 120.514 101.276 82.2905 32.72 18.75

285

