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Abstract – Model checking is one of main formal verification 

methods that are used in the process of circuit design and verifica-

tion. However, there is a problem of state memory explosion in tradi-

tional model checking methods. Bounded model checking (BMC), in 

which the Davis-Putnam-Logemann-Loveland (DPLL) algorithm 

based Satisfiability (SAT) solver is used to verify the circuits, can 

avoid this problem, whereas, its efficiency depends on the perfor-

mance of the solver. Hybrid SAT solver combines the advantages of 

the completeness of DPLL and the fast solving property of stochastic 

local search algorithm, e.g. WalkSAT, and is proved to be an effi-

cient improving way. However, it is noted that the noise parameter in 

WalkSAT could affect the solver’s overall performance. In this pa-

per, an adaptive noise mechanism is proposed to integrate with the 

hybrid algorithm framework to further improve the solver’s perfor-

mance. Our experimental results have shown that the designed hybrid 

solver with adaptive noise performs well in BMC instances and some 

other circuits. 

Index Terms – BMC, SAT, DPLL, WalkSAT, adaptive noise 

I. Introduction 

Verification method is an important way to guarantee the 

correctness of the circuits design. The traditional analog veri-

fication method is costly and incomplete. Formal verification 

is complete and can be used in the early stage of system design 

so that the design cost can be reduced greatly. 

Model checking is a general formal verification method in 

hardware design. With the increase scale of systems, the state 

memory explosion problem limits the application of traditional 

model checking methods, e.g. binary decision diagram. Thus, 

to overcome this problem, the model of bounded model check-

ing (BMC) [1] is developed and proved that it can be reduced 

to the satisfiability problem (SAT) in polynomial time. Then, 

the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [2] 

based SAT solver can solve the BMC more efficiently com-

pared with traditional methods and overcome the problem of 

state memory explosion. However, DPLL-based SAT solvers, 

e.g. zChaff [3] and MiniSAT [4], are time-consuming in large 

instances, and even exponential time in worst cases. Stochastic 

local search algorithm (SLS) is a term of a set of local search 

algorithms, e.g. DLM [5] and WalkSAT [6]. SLS-based SAT 

solvers can quickly find solutions for a SAT problem, but the 

solvers can’t prove the problem is unsatisfiability (UNSAT) if 

they stop without a SAT solution. Ref. [7] mentions that a hy-

brid SAT solver based on DPLL and SLS is an efficient im-

proving way. Ref. [8] dynamically calls WalkSAT as a heuris-

tic in some nodes of branching decisions during DPLL based 

on some conditional probability factor. Ref. [9] presents a 

general HyBrid-Incremental-SAT solver (HBISAT) frame-

work. In this framework, SLS is used to identify a subset of 

clauses to be passed to DPLL through an incremental inter-

face. In addition, the solution obtained by DPLL on the subset 

of clauses is fed back to SLS to jump over any locally optimal 

points. Ref. [10] adds circuit observability [11] into HBISAT. 

This method is much more efficient for large and hard circuits 

than other solvers. DLM & MiniSAT (DM) [12] takes the ap-

proximation solution which is obtained by DLM as an initial 

input for DPLL, guides DPLL to search the subspace that the 

approximation solution lies first. 

In this paper, firstly, based on [12], another hybrid solver 

is implemented by replace DLM with WalkSAT, which is 

called WM for short. Secondly, it is noted that the noise para-

meter in WalkSAT, like the Lagrangian parameter in DLM, 

affects the overall performance of the hybrid solver’s greatly 

no matter for the same instance or different instances. So with 

the progress of WalkSAT, an Adaptive-Noise-Hybrid-SAT 

solver (ANHSAT) is implemented by integrating the adaptive 

noise mechanism [13] into the hybrid algorithm of WM to 

further improve the solver’s overall performance. 

II. Preliminaries 

A. Bounded Model Checking 

BMC is proposed in [1], and the model of the problem can 

be described as follows: 

Given the finite state machine (FSM) M, the task is to 

check whether M satisfies a temporal property P in all paths 

with length less to some bound k. The general structure of 

BMC invariant formula is following: 
1

0 0 0( ( , 1)) ( )k k
ii iI i i P      .                  (1) 

Where I0 is the initial state of FSM, ρ(i,i+1) is a formula 

representing the transition between cycles i and i+1, and Pi is 

the property in cycle i. It is not hard to see that (1) can be SAT 

if and only if there is a reachable state in cycle i which contra-

dicts the property Pi. Otherwise, M satisfies all P for every 

path length with a large enough k. These can be checked by a 

SAT solver. 

B. The Implement of DPLL 

DPLL is first proposed in [2], although it has a history of 

more than 60 years, it is still the core of most complete SAT 

solvers, e.g. zChaff, MiniSAT and their variants. DPLL is 
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mainly consisted of three parts: branching decision, Boolean 

Constraint Propagation (BCP), and conflict resolving, other 

heuristic methods could be included into these three parts. The 

pseudo-code of DPLL is listed in TABLE I. Branching deci-

sion consists of variable selection and polarity decision. BCP 

checks if any other variable assignments may be implied or a 

conflict has been encountered under current assignments. Con-

flict resolving contains conflict analysis, learning, etc. 

C. The Implement of WalkSAT 

WalkSAT is proposed in [6], the pseudo-code of the algo-

rithm is listed in TABLE II. There are three parameters which 

can be tuned in the algorithm: MAX-TRIES, MAX-FLIPS, and 

noise parameter p. At the beginning of the algorithm, a random 

truth assignment is generated to every variable. From there, it 

takes incremental steps in the space of complete assignments, 

flips the value of one variable at a time. If the current assign-

ment satisfies the formula, then the algorithm returns SAT; 

otherwise, the algorithm will randomly pick an unsatisfied 

clause and choose a variable from the clause to flip its polarity 

with the probability of noise parameter p. After reaching MAX-

FLIPS, WalkSAT will restart by another random assignment. 

If the MAX-TRIES threshold is also reached without obtaining 

a solution for the problem, the algorithm will stop. However, 

at this situation the algorithm can’t prove that the solution 

doesn’t exist, so it is incomplete. 

TABLE I    DPLL Algorithm 

define DPLL 

begin 

       while (true) 

               if (!decide())                                //branching  decision 

                      return SAT 

               while (!bcp())                              //BCP 

                      if (!ResolveConflict())         //conflict resolving 

                              return UNSAT 

end 

define  RosolveConflict() 

begin 

       d = most recent decision not tried both ways 

       if (d == null)     return false                //no such d is found 

       flip the value of d 

       mark d as tried both ways 

       undo any invalidated implications 

       return true 

end 

TABLE II    WalkSAT Algorithm 

define  WalkSAT 

begin 

for  i = 1 to  MAX-TRIES 

     T = a  randomly  generated  truth  assignment 

     for  j = 1 to  MAX-FLIPS 

                 if (T  satisfies  the  formula)     then  return  SAT 

                 pick  an  unsatisfied   clause  C 

                 v = choose  a  variable  randomly  in  C  with  probability  p 

                 T = flip the  assignment  of  v  in  T 

           end for 

      end for 

      return  “no satisfying assignment found” 

end 

III. Our Approach 

TABLE III shows a set of experimental data which is ob-

tained via MiniSAT by setting the default polarity decision 

order: All True, All False, and Random, which means once a 

variable is selected, this polarity order will be first assigned to 

the variable before BCP. It can be inferred from TABLE III 

that different polarity decision strategies have a great effect on 

the performance of the solver for different instances. This is 

because different polarity decision will guide the decision tree 

to different directions and form a different search tree. DM 

[12] uses DLM to generate an approximation solution and uses 

this solution to guide the polarity decision by setting the as-

signment in the approximation solution as the default polarity 

for the choosing variable. 

In our work, since WalkSAT is another recognized SLS 

algorithm and could be better than DLM, it is chosen as the 

SLS part in the hybrid solver which is called WM for short. As 

is mentioned before, there are three parameters which can be 

tuned in WalkSAT. The noise parameter p has a major impact 

on the performance of WalkSAT, and the other two parameters 

have little or no impact on the behavior of WalkSAT [13]. 

After implementing WM, we find the noise parameter in 

WalkSAT could also affect the hybrid solver’s overall perfor-

mance in a great way which could be inferred from Fig. 1. 

There are three types of information that can be potential-

ly used to adjust the noise p: 

(1) Background knowledge provided by the algorithm de-

signer including theoretical and empirical knowledge, this may 

help others have an insight into the algorithm’s behavior; 

(2) Syntactic information about the problem instance, e.g. 

the number of clauses and variables, the length of clauses; 

(3) Information collected over the run of the algorithm, 

including information about the search space positions and 

objective function values encountered over the search process. 

Considering these three types of information, the adaptive 

noise mechanism which is proposed in [13] is integrating into 

the algorithm framework of WM to further improve the per-

formance of it. The adaptive noise mechanism could be de-

scribed as follows: 

At the beginning of the search process, let noise be zero, 

this would typically lead to a series of rapid improvements in 

the objective function value followed by local optima (unless a 

solution to the given problem is found). In this situation, the 

noise value should be increased. If this increment is not suffi-

cient to escape from the local optima after a certain number of 

steps, the noise value will be further increased. Ultimately, the 

noise value should be high enough that escape the local opti- 

TABLE III    Polarity Testing 

Instance # of variables # of clauses Polarity CPU Time (s) 

 

bmc-ibm-12 

 

39598 

 

194778 

All True 4.6363 

All False 5.3581 

Random 4.2213 

 

bmc-ibm-13 

 

13215 

 

65728 

All True 9.1846 

All False 3.4745 

Random 4.2135 
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Fig. 1 The effect of the noise parameter on WM’s overall performance 

ma, at which point, the noise can be gradually decreased until 

happens to some next local optima or a solution of the given 

problem is found. 

The above description can be formulated as following 

formulas: 

(1) If the objective function value has not been improved 

over the last θ * m search steps, where m is the number of 

clauses of the given problem and θ is equal to 1/6, then the 

noise p will increase as: 

(1 )p p p     .                             (2) 

(2) Otherwise, for the decrement situation, p should de-

crease as: 

/ 2p p p    .                              (3) 

Where φ above is equal to 1/5. 

Although this adaptive noise mechanism introduces two 

additional parameters θ and φ to the algorithm, it is confirmed 

in [14] that these two parameters need not be tuned for each 

problem instance to achieve good performance for WalkSAT. 

Thus, by integrating the adaptive noise mechanism into 

WM, ANHSAT is implemented and no parameter has to be 

manually tuned to solve a new problem. The flowchart of 

ANHSAT is shown in Fig. 2. The algorithm will first run the 

adaptive noise WalkSAT and return a SAT solution or an ap-

proximation solution of the problem. If not return SAT, the 

approximation solution obtained by the adaptive noise Walk-

SAT will be used as a heuristic polarity decision in DPLL. 

Each time when the DPLL algorithm selects an unassigned 

branching, the polarity decision module will first branch the 

polarity subspace in the approximation solution, and then go 

on other DPLL procedures. Obviously, ANHSAT is a com-

plete solver. Due to limitations on space, the proof will not be 

given here. 

IV. Experimental Results 

ANHSAT is implemented with the following hardware 

and software environment: 

 Hardware: host machine with Win7 platform, Intel 

Core2 Duo P8400 2.26GHz 2.27GHz CPU and 4GB RAM; 

virtual machine with Fedora15 in VMware Workstation 9.0, 

1GB RAM and single core CPU; 

 Software: WalkSAT v50, MiniSAT 2.2 and gcc 4.6.3. 

 In order to reduce the overhead of WalkSAT in ANH-

SAT, MAX-TRIES is set equal to 10 and MAX-FLIPS is equal 

to 1000. This setting can make the runtime of WalkSAT be 

negligible comparing with the process of DPLL. MiniSAT is 

chosen as the DPLL core. ANHSAT is compared with zChaff 

2007, MiniSAT 2.2 and WM with static noise p equals 1/2 

which may be good enough for many instances. The bmc se-

ries benchmarks are taken from SATLIB and others are circuit 

instances from the industrial instances of SAT Competition 

2002 (see TABLE IV). Particularly, the bmc and cnt series are 

all BMC instances.  
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Fig. 2 The flowchart of ANHSAT 
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 The CPU Time data are obtained by calculating the mean 

value from running all instances more than 10 times. Speedup I 

and Speedup II are calculated by CPU Time with following 

formulas respectively: 

 ( ) / *100%Speedup I MiniSAT ANHSAT MiniSAT  .   (4) 

 ( ) / *100%Speedup II WM ANHSAT WM  .                  (5) 

The bold numbers in TABLE IV represent the best perfor-

mance. It can be noted from TABLE IV that ANHSAT is bet-

ter than MiniSAT and WM in all instances, zChaff only per-

forms well in some really simple instances. Moreover, we find 

that the performance of ANHSAT is outstanding in most BMC 

instances and some large and hard circuits. 

V. Conclusions 

BMC model is a variant of model checking widely used in 

circuit design and can be solved by SAT solver. Combining 

the advantages of DPLL and WalkSAT, a hybrid SAT solver 

ANHSAT is implemented. Different from the algorithm 

framework of DM, ANHSAT consists of adaptive noise me-

chanism to further improve the solver’s performance. Our ex-

perimental results have demonstrated that ANHSAT is better 

than MiniSAT and WM with static noise mechanism and can 

efficiently solve the problems of BMC and some other large 

and hard circuits. 
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TABLE IV    Benchmark Testing Results 

 

Instance # of variables # of clauses CPU Time (s) Speedup I 

(%) 

Speedup II 

(%) zChaff 2007 MiniSAT 2.2 WM ANHSAT 

bmc-ibm-1 9685 55870 0.3918 0.065 0.056 0.044 32.31 21.43 

bmc-ibm-3 14930 72106 0.0229 0.1929 0.1626 0.1404 27.22 13.65 

bmc-ibm-4 28161 139716 0.7019 0.212 0.1791 0.1548 26.98 13.57 

bmc-ibm-6 51639 368352 1.0988 0.296 0.2427 0.2334 21.15 3.83 

bmc-galileo-8 58074 294821 1.6358 0.4219 0.2624 0.174 58.76 33.69 

bmc-galileo-9 63624 326999 1.2158 0.268 0.282 0.2455 8.40 12.94 

bmc-ibm-10 59056 323700 6.6160 0.9749 0.7866 0.6517 33.15 17.15 

bmc-ibm-11 32109 150027 8.5947 0.4559 0.4683 0.3485 23.56 25.58 

bmc-ibm-12 39598 194778 18.3682 4.3243 3.1831 2.8991 32.96 26.39 

bmc-ibm-13 13215 65728 2.5346 4.0624 2.8397 2.162 46.78 30.10 

cnt08 4089 13531 6.419 0.9968 0.8742 0.7911 20.64 9.51 

cnt09 9207 30678 34.0848 4.6143 4.7058 3.4207 25.87 27.31 

ssa-sat-1 4824 48233 0.084 1.4708 0.5339 0.308 79.06 42.31 

ca128 2282 6586 0.4429 0.154 0.133 0.109 29.22 18.05 

ca256 4584 13236 1.8677 0.4929 0.3789 0.3229 34.49 14.78 

cache_05 113080 431939 1.9297 18.2832 17.9395 12.1415 33.59 32.32 

comb2 31933 112462 224.324 63.5855 69.7104 54.6064 14.12 21.67 

comb3 4774 16331 >300 55.4536 64.2392 48.5736 12.41 24.39 

f2clk_30 20458 59559 82.3025 16.0146 14.1691 12.4291 22.39 12.28 

f2clk_40 27568 80439 >300 184.83 155.398 147.56 20.16 5.04 

fifo8_100 64762 176313 10.6884 7.5479 6.9365 4.6207 38.78 33.39 

fifo8_200 129762 353513 170.618 38.7761 38.8881 36.0705 6.98 7.25 

fifo8_300 194762 530713 >300 120.514 101.276 82.2905 32.72 18.75 
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