
A Buffer Management for STT-MRAM based Hybrid

Main Memory in Sensor Nodes*

Soohyun Yang and Yeonseung Ryu

Department of Computer Engineering, Myongji University, Yongin, Gyeonggi-do, Korea

sh871201@naver.com, ysryu@mju.ac.kr

*
 This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the

Ministry of Education, Science and Technology(2010-0021897).

Abstract - As the power dissipation has become one of the

critical design challenges in a sensor network environment, non-

volatile memories such as STT-MRAM and flash memory will be

used in the next generation sensor nodes. In this paper, we studied an

efficient buffer management scheme considering the write limitation

of STT-MRAM based main memory as well as the erase-before-write

limitation of flash memory for storage device. The goal of proposed

scheme is to minimize the number of write operations on STT-

MRAM as well as the number of erase operations on flash memory.

We showed through simulation that proposed scheme outperforms

legacy buffer management schemes.

Index Terms – Non-volatile memories, Low power, Buffer

management, STT-MRAM, NAND flash memory.

1. Introduction

Sensor networks are used in a large number of applications

such as military, manufacturing, transportation, safety and

environment monitoring. Sensor nodes collect not only sensed

data from the environment, but also stream of mass media data

like videos and images. In order to perform large data

processing, sensor nodes are expected to require much more

memory than legacy sensor nodes [1-2]. Some recent studies

have shown that DRAM-based main memory spends a

significant portion of the total system power [3]. This is a

serious problem with battery-powered sensor nodes.

Fortunately, the recent advance of memory technology has

ushered in new non-volatile memory (NVM) designs such as

PRAM (Phase change RAM) and MRAM (Magnetic RAM)

that overcome the drawbacks of existing memories such as

SRAM or DRAM [4].

Among them, Spin-Torque Transfer Magnetic RAM (STT-

MRAM) is being regarded as a promising technology for a

number of advantages over the conventional RAMs. STT-

MRAM is a next-generation memory that uses magnetic

materials as the main information carrier [7]. It achieves lower

leakage power and higher density compared to the existing

SRAM. Also, STT-MRAM shows higher endurance compared

to other NVM techniques such as PRAM or Flash, which

makes STT-MRAM more attractive for on-chip memories that

must tolerate much more frequent write accesses compared to

off-chip memories [7-9].

However, one of the biggest weaknesses of STT-MRAM is

long write latency compared to SRAM or DRAM. Since the

fast access time of memories on a chip must be guaranteed and

Fig. 1. System configuration.

cannot be negotiable, the slow write operations of STT-

MRAM limit its popularity, even though it shows competitive

read performance. Another serious drawback of STT-MRAM

is high power consumption in write operations. This issue of

high power consumption in STT-MRAM must be resolved due

to the limited power budgets.

In order to tackle the energy dissipation in DRAM-based

main memory, some studies introduced PRAM-based main

memory organization [5], DRAM/PRAM hybrid main memory

organization [6], STT-MRAM based main memory

organization [10]. Also, there have been some buffer

management schemes for PRAM based main memory and

DRAM-PRAM hybrid main memory [13]. However, to our

knowledge, there is no study on buffer management scheme

for STT-MRAM and DRAM hybrid main memory.

In this paper, we study a buffer management scheme for

sensor nodes which are equipped with both DRAM/STT-

MRAM hybrid main memory and flash memory storages. Fig.

1 illustrates the system configuration considered in this paper.

The goal of proposed buffer management scheme is to reduce

both the number of write operations on STT-MRAM and the

number of erase operations on flash memory. We show that

the proposed scheme outperforms other legacy buffer

management schemes.

The rest of this paper is organized as follows. In Section 2,

we describe the characteristics of STT-MRAM and NAND

flash memory. Also, we introduce some buffer management

schemes considering non-volatile memory. Section 3, we

present a buffer management scheme called Write Aware

Buffer (WAB) scheme. Section 4 presents the experimental

results. Finally, Section 5 concludes the paper.

2. Background

A. STT-MRAM

STT-MRAM is a next generation memory technology that

takes advantage of magnetoresistance for storing data [7-12].

International Conference on Computer, Networks and Communication Engineering (ICCNCE 2013)

© 2013. The authors - Published by Atlantis Press 286

It uses a Magnetic Tunnel Junction (MTJ), the fundamental

building block, as a binary storage. An MTJ comprises a three-

layered stack: two ferromagnetic layers and an MgO tunnel

barrier in the middle (see Fig. 2). Among them, the fixed layer

located at the bottom has a static magnetic spin, the spin of the

electrons in the free layer at the top is influenced by applying

adequate current through the fixed layer to polarize the

current, and the current is passed to the free layer. Depending

on the current, the spin polarity of the free layer changes either

parallel or anti-parallel to that of the fixed layer. The parallel

indicates a zero state, and the anti-parallel a one state.

Fig. 2. MTJ block.

Several schemes have been proposed to provide

architectural support for applying non-volatile memory to

system components. Jog et al. [14] proposed to achieve better

write performance and energy consumption of STT-MRAM-

based L2 cache through adjusting data retention time of STT-

MRAM. Similarly, Smullen et al. [9] reduced the write

latencies as well as dynamic energy of STT-MRAM by

lowering the retention time for designing on-chip caches. In

[15], they integrated STT-MRAM into on-chip caches in a 3D

CMP environment and proposed a mechanism of delaying

cache accesses to busy STT-MRAM banks to hide long write

latency. Prior to that, Sun et al. [16] stacked MRAM-based L2

caches on top of CMPs and reduced overheads through read-

preemptive write buffer and hybrid cache design using both

SRAM and MRAM. Guo et al. [17] resolved the design issues

of microprocessors using STT-MRAM in detail for more

power-efficient CMP systems.

B. NAND Flash Memory

A NAND flash memory is organized in terms of blocks,

where each block is of a fixed number of pages [18]. A block

is the smallest unit of erase operation, while reads and writes

are handled by pages. Flash memory cannot be written over

existing data unless erased in advance. The number of times an

erasure unit can be erased is limited. The erase operation can

only be performed on a full block and is slow that usually

decreases system performance. In order to solve erase-before-

write problem, a kind of device driver called Flash Translation

Layer (FTL) is usually implemented in operating system [19-

25]. The FTL performs the physical-to-logical address

translation to reduce the number of erase operations. Most

address translation schemes use a log block mechanism for

storing updates.

A log block scheme, called block associative sector

translation (BAST), was proposed by [22]. In the BAST

scheme, flash memory blocks are divided into data blocks and

log blocks. Data blocks represent the ordinary storage space

and log blocks are used for storing updates. When an update

request arrives, the FTL writes the new data temporarily in the

log block, thereby invalidating the corresponding data in the

data block. In BAST, whenever the free log blocks are

exhausted, in order to reclaim the log block and the

corresponding data block, the valid data from the log block

and the corresponding data block should be copied into an

empty data block. This is called a merge operation. After the

merge operation, two erase operations need to be performed in

order to empty the log block and the old data block. When the

data block is updated sequentially starting from the first page

to the last page, the FTL can apply a simple switch merge,

which requires only one erase operation and no copy

operations.

C. Buffer Management Schemes

There have been studies on buffer management schemes

considering flash memory [26-32]. The flash-aware buffer

management schemes can be classified into two categories:

page-level [26-30] and block-level schemes [31-32].

A page-level scheme called clean first least recently used

(CFLRU) was proposed by [26]. CFLRU maintains a page list

by LRU order and divides the page list into two regions,

namely the working region and clean-first region like Fig. 3. In

order to reduce the write cost, CFLRU first evicts clean pages

in the clean-first region by the LRU order, and if there are no

clean pages in the clean-first region, it evicts dirty pages by

their LRU order. CFLRU can reduce the number of write and

erase operations by delaying the flush of dirty pages in the

page cache.

Fig. 3. Page list in CFLRU scheme.

In [32], a block-level buffer cache scheme called block

padding LRU (BPLRU) was proposed, which considers the

block merge cost in the log block FTL schemes. BPLRU

maintains a LRU list based on the flash memory block.

Whenever a page in the buffer cache is referenced, all pages in

the same block are moved to the MRU position. When buffer

cache is full, BPLRU scheme evicts all the pages of a victim

block but it simply selects the victim block at the LRU

position. In addition, it writes a whole block into a log block

by the in-place scheme using the page padding technique. In

page padding procedure, BPLRU reads some pages that are

not in the victim block, and writes all pages in the block

sequentially. The page padding may perform unnecessary

reads and writes, but it is effective because it can change an

expensive full merge to an efficient switch merge. In BPLRU,

287

all log blocks can be merged by the switch merge, which

results in decreasing the number erase operations.

3. Buffer Management

We propose a buffer management scheme called Write

Aware Buffer (WAB). The goal of proposed scheme is to

minimize the number of write operations on STT-MRAM as

well as the number of erase operations on flash memory.

A. LRU list

The proposed WAB scheme maintains a LRU list like Fig.

4. The LRU list is composed of block headers based on the

block of flash memory and each block header manages its own

pages loaded from flash memory.

Fig. 4. LRU list based on flash memory block

When a page of a block in the flash memory is first

referenced, the WAB allocates a new buffer and stores the

requested page in the allocated buffer. If the block header for

block does not exist, the WAB allocates a new block header

and places it at the MRU position of the LRU list. Then, the

WAB attaches the buffer of the requested page to the block

header. Whenever a page in the buffer cache is referenced, all

pages in the same block are moved to the MRU position.

B. Buffer Allocation and deallocation

We assume that the main memory is divided into DRAM

and STT-MRAM by a memory address. The memory which

has the low memory address is STT-MRAM and the high

section is allocated to DRAM. When WAB allocates a new

buffer, it tries to allocate it from the low section (i.e., STT-

MRAM).

In order to reduce the number of write operations on STT-

MRAM, when a clean page in the STT-MRAM is referenced

by a write operation, the WAB allocates a DRAM buffer and

writes requested data to the DRAM buffer. Then it deallocates

the STT-MRAM buffer. If there is no free DRAM buffer, the

WAB frees a clean DRAM buffer from the search region and

uses it for storing the requested write data.

The WAB employs an early deallocation technique which

frees clean DRAM buffers early even though free buffers are

still available in the system. Because there could be a lot of

used buffers that will not be accessed soon, we can free them

early with little impact on the cache performance. The WAB

searches clean blocks which use only DRAM buffers from the

search region periodically or whenever the number of free

DRAM buffers falls down below a threshold. Then, it frees

them. This technique can decrease the number of writes on

STT-MRAM because the WAB can secure free DRAM

buffers for new allocations.

If all buffers are used up, the WAB selects a victim block

from the search region. In order to reduce the number of erase

operations on flash memory, the WAB tries to find a clean

block and simply frees all pages in it. If there is no clean block

in the search region, the WAB selects a victim block at the

LRU position of the block list, performs the page padding

technique [32], and flushes all pages of the victim block.

4. Experiment Results

In order to evaluate the proposed scheme, we have

developed a trace-driven simulator. For the workload, we

obtained buffer I/O traces from a laptop for a week. The total

I/O count is 706,833 and I/O ratio is about 55:45.

Fig. 5 (a) shows that the WAB outperforms other schemes

in terms of the write counts on STT-MRAM. The WAB

reduces write counts by roughly 13% on average and up to

17%. In Fig. 5 (b), the WAB can dramatically reduce the erase

counts on flash memory as BPLRU does. Further, the WAB

outperforms BPLRU because it considers clean blocks to

avoid erase operation during replacement procedure.

(a) Write counts on STT-MRAM.

(b) Erase counts on Flash.

Fig. 5. Performance evaluation result.

288

5. Conclusion

Recently, in order to tackle the energy dissipation in

DRAM-based main memory, there have been some studies

which consider next generation non-volatile memories such as

PRAM and STT-MRAM as main memory instead of DRAM.

In this paper, we study a buffer management scheme called

WAB for sensor nodes which have DRAM/STT-MRAM

hybrid main memory and NAND flash memory storage. The

proposed buffer management scheme minimizes both the

number of write operations on STT-MRAM and the number of

erase operations on flash memory. We showed through trace-

driven simulation that proposed scheme outperforms legacy

buffer cache schemes. For the future work, we will evaluate

our scheme by using real traces of sensor nodes.

6. References

[1] N. Lin, Y. Dong, and D. Lu, “Providing virtual memory support for

sensor networks with mass data processing,” International Journal of

Distributed Sensor Networks, vol. 2013, 2013.

[2] A. Lachemann, P. Marron, M. Gauger, D. Minder, O. Saukh, and K.

Rothermel, “Removing the memory limitations of sensor networks with

flash-based virtual memory,” SIGOPS Operating Systems Review, vol.

41, pp. 131-144, 2007.

[3] L. Barroso, and U. Holzle, “The case for energy-proportional

computing,” IEEE Computer, vol.40, no.12, 2007.

[4] X. Yuan, “Modeling, architecture, and applications for emerging memory

technologies,” IEEE Design & Test of Computers, vol. 28, no. 1, pp. 44-

51, 2011.

[5] M. Qureshi, V. Srinivasan, and J. Rivers, “Scalable high performance

main memory system using phase-change memory technology,” In Proc.

of International Symposium on Computer Architecture, 2009.

[6] H. Park, S. Yoo, and S. Lee, “Power management of hybrid

DRAM/PRAM-based main memory,” In Proc. of Design Automation

Conference, 2011.

[7] H. Jang, B. An, N. Kulkarni, K. Yum, E. Kim, “A hybrid buffer design

with STT-MRAM for on-chip interconnects,” in Proc. of ACM/IEEE

International Symposium on Networks-on-Chip (NOCS), 2012.

[8] S. Park, S. Gupta, N. Mojumder, A. Raghunathan, and K. Roy, “Future

cache design using STT MRAMs for improved energy efficiency: devices,

circuits and architecture,” in Proc. of Design Automation Conference

(DAC), pp. 492-497, 2012.

[9] C. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. Stan,

“Relaxing non-volatility for fast and energy-efficient STT-RAM caches,”

in Proc. of High Performance Computer Architecture (HPCA), pp. 50-61,

2011.

[10] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu,

“Evaluating STT-RAM as an energy-efficient main memory alternative,”

in Proc. of IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS), 2013.

[11] A. Charles, N. Mojumder, X. Fong, S.Choday, S. Park, and K. Roy,

“Spin-Transfer torque MRAMs for low power memories: perspective and

prospective,” IEEE Sensors, vol. 12, no. 4, pp. 756-766, 2012.

[12] D. Lee, S. Gupta, and K Roy, “High-performance low-energy STT

MRAM based on balanced write scheme,” in Proc. of ACM/IEEE

International Symposium on Low Power Electronics and Design

(ISLPED), pp. 9-14, 2012.

[13] H. Seok, Y. Park, and Park, K., “Efficient page caching algorithm with

prediction and migration for a hybrid main memory,” Applied Computing

Review, vol. 11, no. 4., 2012.

[14] A. Jog, A. K. Mishra, C. Xu, Y. Xie, N. Vijaykrishnan, R. Iyer,and C. R.

Das, “Cache revive: architecting volatile STT-RAM caches for enhanced

performance in CMPs,” The Pennsylvania State University CSE Dept.,

Tech. Rep. CSE-11-010, June 2011.

[15] A. K. Mishra, X. Dong, G. Sun, Y. Xie, N. Vijaykrishnan, and C. R. Das,

“Architecting on-chip interconnects for stacked 3D STT-RAM caches in

CMPs,” in Proc. of ISCA, 2011.

[16] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A novel architecture of

the 3D stacked MRAM L2 cache for CMPs,” in Proc. of HPCA, 2009.

[17] X. Guo, E. Ipek, and T. Soyata, “Resistive computation: avoiding the

power wall with low-leakage, STT-MRAM based computing,” in Proc.

of ISCA, 2010.

[18] Samsung Electronics, K9XXG08UXM.1G x 8 Bit/2G x 8 bit NAND

Flash Memory

[19] Intel Corp. “Understanding the flash translation layer (FTL)

specification,” 1998.

[20] Y. Ryu, “Method for controlling flash memory device,” Korea Patent 10-

0638638, Sep. 2004.

[21] Gal and S. Toledo, “Algorithms and data structures for flash memories,”

ACM Computing Surveys, vol. 37, no. 2, 2005.

[22] J. Kim, J. Kim, S. Noh, S. Min, and Y. Cho, “A space-efficient flash

translation layer for compactflash systems,” IEEE Transactions on

Consumer Electronics, vol. 48, no. 2, 2002.

[23] Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a flash translation layer

employing demand-based selective caching of page-level address

mapping,” in Proc. of International Conference on Architectural

Support for Programming Languages and Operating Systems, 2009,

pp.229-240.

[24] Y. Ryu, “SAT: switchable address translation for flash memory storages,”

in Proc. of IEEE Computer Software and Applications Conference

(COMPSAC), Jul. 2010.

[25] M. Chiang and R. Chang, “Cleaning policies in mobile computers using

flash memory,” Journal of Systems and Software, vol. 48, no. 3, pp. 213–

231, 1999.

[26] S. Park, D. Jung, J. Kang, J. Kim, and J. Lee. “CFLRU: a replacement

algorithm for flash memory”, in Proc. of the 2006 International

Conference on Compilers, Architecture and Synthesis for Embedded

Systems, pp. 234–241, 2006.

[27] Y. Yoo, H. Lee, Y. Ryu, and H. Bahn, “Page replacement algorithms for

NAND flash memory storages,” in Proc. of International Conference on

Computational Science and its Applications, pp. 201-212, 2007.

[28] Z. Li, P. Jin, X. Su, K. Cui, and L. Yue, “CCF-LRU: A new buffer

replacement algorithm for flash memory,” IEEE Transactions on

Consumer Electronics, vol. 55, no. 3, pp. 1351-1359, August, 2009.

[29] J. Park, H. Lee, S. Hyun, K. Koh, and H. Bahn, “A cost-aware page

replacement algorithm for NAND flash based mobile embedded

systems,” in Proc. of EMSOFT, pp. 315-324, 2009.

[30] X. Tang and X. Meng, “ACR: An adaptive cost-aware buffer

replacement algorithm for flash storage devices,” in Proc. of 11th

International Conference on Mobile Data Management, pp. 33-42, 2010.

[31] H. Jo, J. Kang, S. Park, and J. Lee, “FAB: Flash aware buffer

management policy for portable media players,” IEEE Transactions on

Consumer Electronics, Vol. 48, No. 2, pp. 485-493, 2006.

[32] H. Kim and S. Ahn, “BPLRU: A buffer management scheme for

improving random writes in flash storage,” in Proc. of 6th USENIX

Conference on File and Storage Technologies (FAST), pp. 239-252,

2008.

289

