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Abstract - As the power dissipation has become one of the 

critical design challenges in a sensor network environment, non-

volatile memories such as STT-MRAM and flash memory will be 

used in the next generation sensor nodes. In this paper, we studied an 

efficient buffer management scheme considering the write limitation 

of STT-MRAM based main memory as well as the erase-before-write 

limitation of flash memory for storage device. The goal of proposed 

scheme is to minimize the number of write operations on STT-

MRAM as well as the number of erase operations on flash memory. 

We showed through simulation that proposed scheme outperforms 

legacy buffer management schemes. 

Index Terms – Non-volatile memories, Low power, Buffer 

management, STT-MRAM, NAND flash memory. 

1.  Introduction 

Sensor networks are used in a large number of applications 

such as military, manufacturing, transportation, safety and 

environment monitoring. Sensor nodes collect not only sensed 

data from the environment, but also stream of mass media data 

like videos and images. In order to perform large data 

processing, sensor nodes are expected to require much more 

memory than legacy sensor nodes [1-2]. Some recent studies 

have shown that DRAM-based main memory spends a 

significant portion of the total system power [3]. This is a 

serious problem with battery-powered sensor nodes. 

Fortunately, the recent advance of memory technology has 

ushered in new non-volatile memory (NVM) designs such as 

PRAM (Phase change RAM) and MRAM (Magnetic RAM) 

that overcome the drawbacks of existing memories such as 

SRAM or DRAM [4].  

Among them, Spin-Torque Transfer Magnetic RAM (STT-

MRAM) is being regarded as a promising technology for a 

number of advantages over the conventional RAMs. STT-

MRAM is a next-generation memory that uses magnetic 

materials as the main information carrier [7]. It achieves lower 

leakage power and higher density compared to the existing 

SRAM. Also, STT-MRAM shows higher endurance compared 

to other NVM techniques such as PRAM or Flash, which 

makes STT-MRAM more attractive for on-chip memories that 

must tolerate much more frequent write accesses compared to 

off-chip memories [7-9].  

However, one of the biggest weaknesses of STT-MRAM is 

long write latency compared to SRAM or DRAM. Since the 

fast access time of memories on a chip must be guaranteed and  

 

Fig. 1. System configuration. 

cannot be negotiable, the slow write operations of STT-

MRAM limit its popularity, even though it shows competitive 

read performance. Another serious drawback of STT-MRAM 

is high power consumption in write operations. This issue of 

high power consumption in STT-MRAM must be resolved due 

to the limited power budgets. 

In order to tackle the energy dissipation in DRAM-based 

main memory, some studies introduced PRAM-based main 

memory organization [5], DRAM/PRAM hybrid main memory 

organization [6], STT-MRAM based main memory 

organization [10]. Also, there have been some buffer 

management schemes for PRAM based main memory and 

DRAM-PRAM hybrid main memory [13]. However, to our 

knowledge, there is no study on buffer management scheme 

for STT-MRAM and DRAM hybrid main memory. 

In this paper, we study a buffer management scheme for 

sensor nodes which are equipped with both DRAM/STT-

MRAM hybrid main memory and flash memory storages. Fig. 

1 illustrates the system configuration considered in this paper. 

The goal of proposed buffer management scheme is to reduce 

both the number of write operations on STT-MRAM and the 

number of erase operations on flash memory. We show that 

the proposed scheme outperforms other legacy buffer 

management schemes. 

The rest of this paper is organized as follows. In Section 2, 

we describe the characteristics of STT-MRAM and NAND 

flash memory. Also, we introduce some buffer management 

schemes considering non-volatile memory. Section 3, we 

present a buffer management scheme called Write Aware 

Buffer (WAB) scheme. Section 4 presents the experimental 

results. Finally, Section 5 concludes the paper. 

2.  Background 

A. STT-MRAM 

STT-MRAM is a next generation memory technology that 

takes advantage of magnetoresistance for storing data [7-12]. 
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It uses a Magnetic Tunnel Junction (MTJ), the fundamental 

building block, as a binary storage. An MTJ comprises a three-

layered stack: two ferromagnetic layers and an MgO tunnel 

barrier in the middle (see Fig. 2). Among them, the fixed layer 

located at the bottom has a static magnetic spin, the spin of the 

electrons in the free layer at the top is influenced by applying 

adequate current through the fixed layer to polarize the 

current, and the current is passed to the free layer. Depending 

on the current, the spin polarity of the free layer changes either 

parallel or anti-parallel to that of the fixed layer. The parallel 

indicates a zero state, and the anti-parallel a one state.  

 

Fig. 2. MTJ block. 

Several schemes have been proposed to provide 

architectural support for applying non-volatile memory to 

system components. Jog et al. [14] proposed to achieve better 

write performance and energy consumption of STT-MRAM-

based L2 cache through adjusting data retention time of STT-

MRAM. Similarly, Smullen et al. [9] reduced the write 

latencies as well as dynamic energy of STT-MRAM by 

lowering the retention time for designing on-chip caches. In 

[15], they integrated STT-MRAM into on-chip caches in a 3D 

CMP environment and proposed a mechanism of delaying 

cache accesses to busy STT-MRAM banks to hide long write 

latency. Prior to that, Sun et al. [16] stacked MRAM-based L2 

caches on top of CMPs and reduced overheads through read-

preemptive write buffer and hybrid cache design using both 

SRAM and MRAM. Guo et al. [17] resolved the design issues 

of microprocessors using STT-MRAM in detail for more 

power-efficient CMP systems. 

B. NAND Flash Memory 

A NAND flash memory is organized in terms of blocks, 

where each block is of a fixed number of pages [18]. A block 

is the smallest unit of erase operation, while reads and writes 

are handled by pages. Flash memory cannot be written over 

existing data unless erased in advance. The number of times an 

erasure unit can be erased is limited. The erase operation can 

only be performed on a full block and is slow that usually 

decreases system performance. In order to solve erase-before-

write problem, a kind of device driver called Flash Translation 

Layer (FTL) is usually implemented in operating system [19-

25]. The FTL performs the physical-to-logical address 

translation to reduce the number of erase operations. Most 

address translation schemes use a log block mechanism for 

storing updates.  

A log block scheme, called block associative sector 

translation (BAST), was proposed by [22]. In the BAST 

scheme, flash memory blocks are divided into data blocks and 

log blocks. Data blocks represent the ordinary storage space 

and log blocks are used for storing updates. When an update 

request arrives, the FTL writes the new data temporarily in the 

log block, thereby invalidating the corresponding data in the 

data block. In BAST, whenever the free log blocks are 

exhausted, in order to reclaim the log block and the 

corresponding data block, the valid data from the log block 

and the corresponding data block should be copied into an 

empty data block. This is called a merge operation. After the 

merge operation, two erase operations need to be performed in 

order to empty the log block and the old data block. When the 

data block is updated sequentially starting from the first page 

to the last page, the FTL can apply a simple switch merge, 

which requires only one erase operation and no copy 

operations.  

C. Buffer Management Schemes 

There have been studies on buffer management schemes 

considering flash memory [26-32]. The flash-aware buffer 

management schemes can be classified into two categories: 

page-level [26-30] and block-level schemes [31-32].  

A page-level scheme called clean first least recently used 

(CFLRU) was proposed by [26]. CFLRU maintains a page list 

by LRU order and divides the page list into two regions, 

namely the working region and clean-first region like Fig. 3. In 

order to reduce the write cost, CFLRU first evicts clean pages 

in the clean-first region by the LRU order, and if there are no 

clean pages in the clean-first region, it evicts dirty pages by 

their LRU order. CFLRU can reduce the number of write and 

erase operations by delaying the flush of dirty pages in the 

page cache.  

 

Fig. 3. Page list in CFLRU scheme. 

In [32], a block-level buffer cache scheme called block 

padding LRU (BPLRU) was proposed, which considers the 

block merge cost in the log block FTL schemes. BPLRU 

maintains a LRU list based on the flash memory block. 

Whenever a page in the buffer cache is referenced, all pages in 

the same block are moved to the MRU position. When buffer 

cache is full, BPLRU scheme evicts all the pages of a victim 

block but it simply selects the victim block at the LRU 

position. In addition, it writes a whole block into a log block 

by the in-place scheme using the page padding technique. In 

page padding procedure, BPLRU reads some pages that are 

not in the victim block, and writes all pages in the block 

sequentially. The page padding may perform unnecessary 

reads and writes, but it is effective because it can change an 

expensive full merge to an efficient switch merge. In BPLRU, 
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all log blocks can be merged by the switch merge, which 

results in decreasing the number erase operations. 

3.   Buffer Management 

We propose a buffer management scheme called Write 

Aware Buffer (WAB). The goal of proposed scheme is to 

minimize the number of write operations on STT-MRAM as 

well as the number of erase operations on flash memory. 

A. LRU list 

The proposed WAB scheme maintains a LRU list like Fig. 

4. The LRU list is composed of block headers based on the 

block of flash memory and each block header manages its own 

pages loaded from flash memory.  

 

Fig. 4. LRU list based on flash memory block 

When a page of a block in the flash memory is first 

referenced, the WAB allocates a new buffer and stores the 

requested page in the allocated buffer. If the block header for 

block does not exist, the WAB allocates a new block header 

and places it at the MRU position of the LRU list. Then, the 

WAB attaches the buffer of the requested page to the block 

header. Whenever a page in the buffer cache is referenced, all 

pages in the same block are moved to the MRU position.  

B. Buffer Allocation and deallocation 

We assume that the main memory is divided into DRAM 

and STT-MRAM by a memory address. The memory which 

has the low memory address is STT-MRAM and the high 

section is allocated to DRAM. When WAB allocates a new 

buffer, it tries to allocate it from the low section (i.e., STT-

MRAM).  

In order to reduce the number of write operations on STT-

MRAM, when a clean page in the STT-MRAM is referenced 

by a write operation, the WAB allocates a DRAM buffer and 

writes requested data to the DRAM buffer. Then it deallocates 

the STT-MRAM buffer. If there is no free DRAM buffer, the 

WAB frees a clean DRAM buffer from the search region and 

uses it for storing the requested write data. 

The WAB employs an early deallocation technique which 

frees clean DRAM buffers early even though free buffers are 

still available in the system. Because there could be a lot of 

used buffers that will not be accessed soon, we can free them 

early with little impact on the cache performance. The WAB 

searches clean blocks which use only DRAM buffers from the 

search region periodically or whenever the number of free 

DRAM buffers falls down below a threshold. Then, it frees 

them. This technique can decrease the number of writes on 

STT-MRAM because the WAB can secure free DRAM 

buffers for new allocations. 

If all buffers are used up, the WAB selects a victim block 

from the search region. In order to reduce the number of erase 

operations on flash memory, the WAB tries to find a clean 

block and simply frees all pages in it. If there is no clean block 

in the search region, the WAB selects a victim block at the 

LRU position of the block list, performs the page padding 

technique [32], and flushes all pages of the victim block.   

4.   Experiment Results 

In order to evaluate the proposed scheme, we have 

developed a trace-driven simulator. For the workload, we 

obtained buffer I/O traces from a laptop for a week. The total 

I/O count is 706,833 and I/O ratio is about 55:45.  

Fig. 5 (a) shows that the WAB outperforms other schemes 

in terms of the write counts on STT-MRAM. The WAB 

reduces write counts by roughly 13% on average and up to 

17%. In Fig. 5 (b), the WAB can dramatically reduce the erase 

counts on flash memory as BPLRU does. Further, the WAB 

outperforms BPLRU because it considers clean blocks to 

avoid erase operation during replacement procedure.  

 

(a) Write counts on STT-MRAM. 

 

(b) Erase counts on Flash. 

Fig. 5. Performance evaluation result. 
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5.  Conclusion 

Recently, in order to tackle the energy dissipation in 

DRAM-based main memory, there have been some studies 

which consider next generation non-volatile memories such as 

PRAM and STT-MRAM as main memory instead of DRAM. 

In this paper, we study a buffer management scheme called 

WAB for sensor nodes which have DRAM/STT-MRAM 

hybrid main memory and NAND flash memory storage. The 

proposed buffer management scheme minimizes both the 

number of write operations on STT-MRAM and the number of 

erase operations on flash memory. We showed through trace-

driven simulation that proposed scheme outperforms legacy 

buffer cache schemes. For the future work, we will evaluate 

our scheme by using real traces of sensor nodes. 
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