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 Abstract - In this paper the dynamics of a single-mode 

semiconductor laser model is investigated. The nonlinear rate 

equations describe the dynamic evolution of semiconductor laser. We 

study transients occurring in the system using numerical simulation. 

A fourth order Runge-Kutta method is used to calculate two coupled 

first-order differential equations. Changes in the pumping parameter 

of the system can lead to drastic changes of the character of the 

solutions. Qualitative analysis of the system is used for investigating 

the typical bifurcations and allowed conditions for the existence of 

damped oscillations in the system. 

 Index Terms – simulation, model, rate equation, dynamic 

systems, stability. 

1.  Introduction 

Over the past decade instabilities in laser have become a 

widely discussed topic in quantum optics [1,2]. To understand 

the origin of such behaviour is an effort that continues today. 

Semiconductor lasers were developed in 1962 [3]. For the last 

30 years they are widely used for transmission, recording and 

reading information, optical pumping. Their main distinctive 

features are high efficiency, small size, the possibility of 

modulating the output of the optical characteristics by an 

injection current change, compactness, relatively low cost, 

wide choice of wavelength, high efficiency, the ability to 

achieve high-speed data transmission. A significant progress in 

the development of semiconductor lasers came in the late 60's 

early 70's of the twentieth century, when the idea of using 

semiconductor heterostructures as an active region of the laser 

was used to achieve low-threshold lasing at room 

temperature[4]. Because of these properties semiconductor 

lasers based on gallium arsenide and other compounds 

(AlGaAs, InP, InGaAsP) nowadays are widely used in various 

fields of technology, such as optical fibre communication 

systems.  

Semiconductor laser is an excellent example of nonlinear 

dynamic systems. To construct the different electronic 

systems, including a semiconductor laser as a component 

element, it is necessary to analyse its dynamics and transients. 

To get an overview of possible behaviour we can resort to 

numerical calculations. Another possible method to predict the 

nonlinear dynamic behaviour of laser is the use of qualitative 

analysis. In the present paper we consider typical single-mode 

laser rate equations. The coupled rate equations are nonlinear, 

so that they may under certain conditions exhibit spiking and 

relaxation oscillations as the laser approaches its steady state.  

A single mode balanced model provides certain qualitative and 

quantitative information on the number of practically 

important characteristics of the radiation, which is very 

important for the preliminary design of optical systems. 

2.  The Model 

 The dynamical behaviour of semiconductor lasers can be 

described by a set of coupled first order differential equations 

[5], relating the carrier concentration N and photon density S 

in the active region: 

( )th

e

dN N
P G N N

dt t
                (1) 

 ( )th

p e

dS S N
G N N b

dt t t
    ,          (2) 

where et   and pt   are the carrier and photon life times, P  is 

the pumping rate , which is equal to
I

qV
 ( I is the injection 

current, q is the electron charge, V   is the volume of active 

region), thN   is the carrier density for transparency (the 

electron density above which the lasing gain becomes 

positive), ( )thG N N  is the amplification rate due to the 

stimulated emission, b  is the spontaneous emission factor. 

Equation (1) represents the rate of increase in the 

concentration of the carriers. It is enhanced by term pumping 

rate and decreased by term of the rate of losses of carriers 

during the spontaneous transition and losses due to stimulated 

transition. The rate of increase in the density of photons (2) is 

enhanced by the loss of photons in the resonator and the rate of 

spontaneous emission of photons in the laser mode and 

decreased by term of the rate of production of photons due to 

stimulated emission. 

3.  Discussion and Results 

A. Numerical Solution 

To analyze the dynamic behaviour of a single-mode 

semiconductor laser we study the temporal evolution of the 

system by integrating the rate equations (1,2). It is not 

generally possible to know analytic solutions for nonlinear 

systems. For solution of coupled differential equations, 

formulated in this paper, there are many methods. The main of 

them are based on the Taylor series expansion, and are usually 
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limited to the algorithms of the Runge-Kutta method. Without 

describing variety of methods, we note that the most common 

and acceptable accuracy for a given class of problems is the 

Runge-Kutta fourth order method. This method achieves 

higher accuracy than the methods of the lowest order, but 

enough not to use the methods of higher order [6,7]. 

The general features can be understood with the help of 

Fig. 1 that shows response of the rate equations for 

semiconductor laser.  The typical values of the different 

parameters used in the calculations are given in Table I.  

Initially, the carrier density N raises steadily, after reaching 

its critical value (threshold), a sharp drop is observed, which in 

turn corresponds to the jump in the photon density S (see Fig. 

1). From that moment, a coherent light emission starts. Then, 

the carrier density N starts to grow up again whereas s drops 

respectively. In this case critical value of N is not so high, and 

S is not reduced so low. These relaxation oscillations occur as 

long as N and S do not reach a steady state. The laser spikes 

are steep and narrow because of the rapid rates of rise and fall 

of the photon number in the cavity.  

TABLE I 

PARAMETERS USED IN NUMERICAL SIMULATION 

Parameter Meaning Value Units 

Nth trasparency carrier density 1024 m-3 

te  carriers lifetime 3·10-9 s 

t p
 photons lifetime 1·10-12 s 

b spontaneous emission factor 10-5  

V Modal volume 3.36·10-17 m3 

 

 

Fig. 1 Time response behavior of laser rate equations 

 

Large and rapid changes of amplitude of photon numbers 

can be also observed in the phase portrait (see Fig. 2). In this 

plane we can follow the oscillatory trajectory that circles to 

convergence steady state point. 
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Fig. 2 Phase plane describing the laser spiking 

Let’s examine how the change in the pumping parameter 

affects the system. The trajectory of the system after reducing 

the value of the pump current to 0.03·Ith is shown in Fig. 3. In 

this case N does not achieve the value, sufficient to start the 

lasing with current value of the pump (below the threshold). 

Hence, the corresponding increase in the number of photons 

(population inversion) is not occurred. Photon density is equal 

to zero. 
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Fig. 3 Change in photons and carriers densities at the value of the pump 

current I = 0.03Itth. 

It can also be established that increasing the pump current 

in the model increases the frequency of the relaxation 

oscillations and reduces the turn on delay time. The system 
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responses for different values of the pump current are shown in 

Fig. 4 and Fig. 5. 
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Fig. 4   Temporal evolution of carrier and photon density at I = 2.5·Ith. 
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Fig. 5   Temporal evolution of carrier and photon density at I = 3·Ith. 

B. Bifurcation Analysis 

 Let us now examine the stability of the system using 

qualitative analysis.  

Solutions of nonlinear differential equations depend on their 

parameters, like solutions of linear differential equations. 

There may be critical parameter values, at which the character 

of the solution changes completely. For this reason, it is 

important to know the qualitative behaviour of the solutions 

and examine stability boundaries of equilibria. 

In usual semiconductor lasers, such as for a laser based on 

GaAs with emission wavelength near 850 nm, or InGaAsP 

with emission wavelength near 1310 nm in devices with cavity 

length L=300 m  the spontaneous emission factor   is on 

the order of 10
-4

, 10
-5

 [8], so that in first approximation we can 

neglect corresponding term in the equation and consider 

following equations: 
 

 ( )th

e

dN N
P G N N

dt t
                                          (3) 

      ( ) .th

p

dS S
G N N

dt t
               (4) 

To simplify the system of equations (3,4) we introduce the 

following dimensionless variables: 

es Sgt , ( ) 1
p thn Gt N N    , 1.e pp PGt t    

Substituting the new variables in the equations, we obtain 

the following equations in dimensionless form. (Dots over the 

variables denote derivatives over time t) 

p

ns
s

t
                                                                       (5) 

 ( 1)
.

e

p n s n
n

t

  
                                                   (6) 

System has two trivial steady- state solutions:  

*

1 0s  , 
*

1n p                                                       (7) 

*

2s p , 
*

2 0.n                     (8) 

To investigate the dependence of the parameter p, it is 

necessary to linearize the system about the steady points. To 

classify them, we compute the jacobian matrix: 

J
( 1) ( 1)

p p

e e

n ss s
t ts n

n n n s

s n t t

   
       
       
      

 

 

. 

Steady state (7) is a saddle since eigenvalues of the 

jacobian matrix J of equations (5,6), being the roots of the 

characteristic polynomial 
2det(J ) J det JI tr      , 

have opposite signs:  

1

1

et
   , 2

p

p

t
  . 

Steady state (8) is a stable focus because  

2

1,2

1 ( 1) 4 /

2

e p

e

p p pt t

t


    
 ,   det J>0. 

The angular frequency of relaxation oscillations is defined 

as: 

24 / ( 1)
Im

2

e p

e

pt t p

t
 

 
  . 

Thus, the stability of steady states changes when p passes 

through 0, so that the system undergoes a transcritical 

bifurcation.  
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For steady state (8) to be a focus (corresponding to damped 

oscillations), the discriminant of the quadratic characteristic 

equation has to be negative: 

2 2

2

2 2

( J) 4det J 4

( 1)
4

( 2 (2 / 1) 1) / 0.

e e p

e p e

tr b ac

p p

t t t

p p t t t

    

  
   
 

    

 

This inequality is equivalent to following conditions: 

2 2 2 2
1 1 1 1

1

a p a
a a a a

a


       


 

, 

 here
p

e

t
a

t
 . 

Hence, the existence of oscillations requires the rate of 

spontaneous recombination to be slower than the photon loss 

rate. It also imposes restriction on the intensity of pump. The 

allowed range of p is wide when 1a  : 0 4 /p a  .It 

shrinks to 1 2 1 1 2 1a p a       as a  gets closer to 

1. 

4.   Conclusion 

 A single-mode semiconductor laser simulator based on 

coupled differential equations was considered.  A model, 

which represents the rate equations, was built using a fourth 

order Runge - Kutta method. The temporal evolutions of 

photon and carrier densities of the rate equations show the 

transients occurring in the system. The inversely proportional 

relation between the turn on delay time and the injected 

current over threshold are demonstrated, so that the higher 

applied current leads to the earlier starting of lasing. As a 

result of the simulation was also point out that as the current 

pump increases, the duration of the transition process 

decreases. The stability of the system and the conditions for 

the existence of damped oscillations was described using 

qualitative analysis; the phase plane obtained for current 

system verifies the oscillatory behaviour of a single-mode 

semiconductor laser. 
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