
Distributed Positioning of Replica using Grass Growing

Structure

Worawit Fankam-ai and Peraphon Sophatsathit

Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of

Science, Chulalongkorn University, Bangkok, Thailand

fworawit@gmail.com, peraphon.s@chula.ac.th

 Abstract - This paper proposes a distributed data replication

scheme based on Grass Growing Structure to reduce bandwidth

consumption and access latency in distributed systems. The

replication will be multicast to the nearest nodes using Depth Limit

Search algorithm within a predefined limiting distance. Performance

is measured by means of effective network usage and mean job time.

The EU Data Grid Testbed is employed as the benchmarking

assessment to compare the proposed approach with conventional

Centralized and Flooding algorithms. The results yield less access

latency, good scalability, and reliability than those comparable

approaches.

 Index Terms - Distributed Positioning, Replica location, Grass

Growing Structure.

1. Introduction

Replication is a common method used to improve the

performance of data access in distributed systems. It improves

not only data access efficiency, but also data availability and

fault tolerance. In order to achieve higher replication

performance, there must be an efficient replica scheme to

manage the replication process. Replica scheme mainly

includes replication strategy and replica selection strategy to

find the best-fit replica, replication consistency, and replica

positioning mechanisms. Replication strategy determines when

and where to create a replica, taking into account of the factors

such as number of data requests, network condition, and

storage availability of each replica site.

In this paper, we propose a replication positioning

algorithm based on Grass Growing Structure. The focus on

replica positioning mechanisms is to determine where the new

replica should be located so that multicast traffic will be

minimal. The algorithm is inspired by the growing of grass

with adequate irrigation which will flourish more than those

depleting of water. Grass areas that receive water represent

distribution of data replicas, while grass trunk represents

network topology. Thus, data replicas spread around starting

from the initial source node. Data are replicated only via the

designated routes. No superfluous distribution that occupies

limited bandwidth to be wasted. Thus, performance of this

algorithm will be compared with Flooding algorithm

[1][5][11] and Centralized Location algorithm [1][5][11]

measured by Mean Job Time and Effective Network Usage

[2][3][4][5].

2. Related Work

Some principal definitions of replication location model

and two related replica location algorithms [1][5][11] are

described as a basis for the development of the proposed

algorithm.

SSSS SS

SS

SS

SS

SS

SS

SS

SS

SS

SS
SS SS SS

WAN
RLN

Data reqest Site

Common site

Replica site

Fig. 1 Replica Location Server Model

A. Terminology

A logical file name (LFN) is a unique logical identifier for

desired data content. The replica location service must identify

one or more physical copies (replicas) of the logical file. Each

physical copy is identified by a physical file name (PFN),

which specifies its location on a storage site.

A number of storage sites (SS) collaborate to share their

storage capabilities to all users. A replica location node (RLN)

aggregates LFN to PFN mappings from one or more SSs and

collaborates with other RLNs to build a distributed catalog of

LFN mappings.

RLNs offer both a query interface to clients and a

registration interface that SSs can enlist PFN to LFN mapping

for files stored locally. RLNs also organize into a search

network to allow remote searches. Nodes in this network

distribute compressed information on the set of LFN mappings

stored locally in the form of node digests.

Depth Limit Search (DLS) [8], like the normal depth-first

search, is an uninformed search. It works exactly like depth-

first search, but avoids the completeness drawbacks by

imposing a maximum limit on the depth of the search. Even if

International Conference on Computer, Networks and Communication Engineering (ICCNCE 2013)

© 2013. The authors - Published by Atlantis Press 446

the search could still expand a vertex beyond that depth, DLS

will not do so and thereby will not follow infinitely deep paths

or get stuck in cycles. Therefore depth limited search will find

a solution if it is within the depth limit, which guarantees at

least completeness on all graphs.

B. Definitions

v

4

r

4

v

0

r

0

v

3

r

3

v

1

r

1

v

2

r

2

v

5

r

5

v

6

r

6
Fig 2. Centralized Location

 V is the aggregation of sites in the data grid system

 VSS is the set of nodes that storage desired data(files) and

their copies

 lvi is the location of the node vi

 Vrln is the set of sites that aggregate information about LFN

to PFN mapping or some information about nodes

 Flooding algorithm. Each progress of distribution location

starts from the node v0 ∈VSS that stores the information

about the location of VSS, but does not include the

corresponding relationship between files and VSS. That is

to say, the algorithm does not know the location of VSS

before locating one replica r. In all the information for any

node vi ∈VSS stored in the node v0, the corresponding

location lvi is unknown. Thus, this algorithm can be costly

in terms of wasted bandwidth while a message may only

have one destination to be sent. Moreover, messages can

duplicate in the network which increase the load on the

network bandwidth. Worse yet, duplicate packets may

circulate forever unless certain precautions are taken

[9][10].

 Centralized Location Algorithm [1]. In Fig. 2, V4 is only

one Vrln which contains all the information about location

of VSS and LFN to PFN mappings.

3. Distributed Positioning of Replica using Grass Growing

Structure

The proposed approach to position the replica will follow

grass growing pattern, aka Grass Growing Structure. The area

of growing grass with adequate irrigation will flourish better

than the one depleting of water. Grass areas that receive water

represent the position of data replicas, having grass trunks as

the replica links that form the distribution topology. Fig. 3

shows an example of grass growing structure. The left figure

represents grass trunk and right one is link distribution

topology. If grass receives water at node 4, then node 6,7,8

will flourish better than other nodes. So the nearest nodes to

the initial source node 4 are 2,6,7,8

1

2

6

3 5

8

4

7

1

2

6

3 5

8

4

7

Fig. 3 Grass Growing Structure

The first stage positioning of replicas is to set up a random

initial source node. Selection of neighboring nodes uses DLS

algorithm [8] to find the path between source node and

neighboring nodes. The procedure starts stepping each node

with a vector to all directly attached nodes and advertising its

current vector to all neighboring nodes. In the process, it finds

the shortest distance and updates the distance cost. The nearest

neighboring nodes just selected will be used as the second

stage positioning of replica source nodes. This process repeats

until one of the nearest neighbour nodes is the destination

node. At which point, data replication commences. Thus,

considerable network traffic is reduced compared with

conventional flooding algorithm. However, we imposed a

stopping criterion on the Grass Growing Structure algorithm

by limiting the DLS depth to 2 to prevent indefinite depth

search. The GrassGrowing algorithm is shown below.

Function GrassGrowing

Begin

Location replica r starts from initial node v0;

// Select a node vi using DLS algorithm

If DLS limit != 2

 Replicate data on node vi

Else repeat GrassGrowing

End;

4. Simulation and evaluation

To measure the performance of the Grass Growing

Structure algorithm, we employed a simulation using

OptorSim [2][3][4] with network topology from EU Data Grid

Testbed [6] as shown in Fig. 4. The results were compared

with Flooding and Centralized Location algorithms which

performed on the same testbed.

447

Performance measurement is carried out by means of

mean job execution time [2][3][4] and effective network usage

(ENU) [2][3][4]. Details are described below.

A. Grid Configuration

This research used OptorSim [2][3][4] as the data grid

simulator to simulate real data grid environment. This

simulator is developed in Java under the funding of the

European Data Grid project (EU Data Grid).

The OptorSim simulation ran on Intel Xeon 2.1GHz.

There were three input configuration files. They are:

1. Network topology file that described the links between

different sites, the available network bandwidth, and size of

disk storage on each site.

2. Data file that contained the number of replicas and

information on how they distribute.

3. Optorsim configuration file is the set number of tests and

data request randomization procedure.

B. Network Topology Testbed

Fig. 4 shows the EU Data Grid Testbed [6] as the network

simulation topology. Site S0 is the CERN (European

Organization for Nuclear Research) location. The star denotes

a router and the circle denotes a site. Each link shows the

available bandwidth between two connecting sites. In this

experiment, each Testbed site, excluding CERN, was assigned

a computing and storage element. The CERN was allocated a

Storage Element to hold all the master files but was not

assigned any Computing Elements (CEs). A CE ran jobs that

used data files stored on Storage Elements (SEs). Nodes

without Computing or Storage Elements acted as network

nodes or routers.

Fig. 4 EU Data Grid Testbed sites and their associated network topology. The

numbers indicate bandwidth between the two ending sites in Mbit/s(M)

or Gbit/s(G). Stars denote routers and circular nodes denote replica sites.

The mean job execution time is defined as the total time to

execute all the grid jobs divided by the number of jobs. ENU

(
r
ENU) is defined as network usage after executing all the grid

jobs as follows:

accessesfilelocal

nsreplicatiofileaccessesfileremote

ENU
N

NN
r

__

where accessesfileremoteN __ is the number of times the CE reads

a file from different SE sites. accessesfilelocalN __ is the number

of times a CE reads a file from an SE on the same site. For a

given network topology, a low value of ENUr
 indicates that

replication is a better optimization strategy than locating

another site.

 Assuming S0 is the starting point, the Centralized

Algorithm places all the data in S0. All sites must retrieve the

desired data from S0. Flooding Algorithm starts distributing

data through routers and individual site (enclosed by

parenthesis) in the following order: (S0), (S2), S1, S17, S3,

S14, (S4), (S5), (S6), (S7), (S8), S9, (S16), (S15), S10, S12,

(S13), and (S11). The proposed Grass Growing Structure

Algorithm replicates the data in the following order: (S0),

(S2), S17, S14, S1, S3, (S4), (S5), (S6), (S7), (S8), and (S9).

C. Simulation Results and Discussion

Based on randomization procedures, data requests were

issued on EU data grid testbed to measure the performance of

the proposed replication method. Figure 5 shows ENU

comparison of Grass Growing Structure Algorithm, Flooding,

and Centralized Location algorithms. From the outset, the

Centralized Location algorithm performs the best, having

lowest rENU while the simulation is still in transient state. As

more runs elapse, the graph steadily increases and levels at 0.8

after 500 runs. In the meantime, both Grass Growing Structure

Algorithm and Flooding algorithms start with high rENU but

gradually drop to 0.2 after 500 runs.

 Fig. 6 shows the mean job time of the three algorithms.

The Centralized Location algorithm expends the highest ratio

among all algorithms. However, after 100 runs, the ratio

begins to level off and reaches a steady state at 500 runs.

 Table 1 illustrates comparative Percentage of Storage

Filled/Available [11] that is calculated from SE usage

multiplied by available SE storage. Notice that the Centralized

Algorithm has the highest percentage because data are stored

(filled) at only one (S0) available location.

 One noteworthy benefit precipitates from this work is

reliability and robustness of the underlying network. The

proposed Grass Growing Structure Algorithm positions the

replicas at appropriate sites not only to reduce the traffic in

comparison with the other two algorithms, but also increase

reliability and robustness to the system. The distribution can

thus be more widely dispersed and reachable by all clients in

the network.

448

Fig. 5 Effective Network Usage (r
ENU)

Fig. 6 Mean Job Time

Table 1 Summary of Storage Filled/Available percentage of all replicas by

each algorithm

Algorithm percentage

Grass Growing Structure Algorithm 0.378084

Flood Algorithm 0.480568

Centralized Location Algorithm 0.823892

5. Conclusion and Future Work

In this paper, we propose a replica positioning algorithm

called Grass Growing Structure as a means for data replication

in a distributed environment. The proposed approach is based

on natural grass growing process depending on the amount of

water irrigation, whereby data are replicated at the designated

location accordingly. This introduces a simple yet effective

selection and replication of data over the network.

Performance of the proposed algorithm is assessed in

comparison with conventional Centralized Location and

Flooding algorithms. The results were proved to be

satisfactory in terms of ENU and mean job time.

In our future work, we will extend our simulation to

incorporate wider network topology testbeds to assess the

performance of the Grass Growing Structure.

References

[1] Runqun Xiong, Junzhou Luo, and Aibo Song, “An Effective Replica

Location Algorithm Based on Routing-Forward in Data Grid”, in

Proceedings of The fifth Annual China Grid Conference, pp. 31-36,

July 16-18, 2010.

[2] David G. Cameron, Ruben Carvajal-Schiaffino, A. Paul Millar,

Caitriana Nicholson, Kurt Stockinger, and Floriano Zini, “Evaluating

Scheduling and Replica Optimisation Strategies in OptorSim”, in the

4th International Workshop on Grid Computing (Grid2003), IEEE

Computer Society Press, pp. 52-59, November 17, 2003.

[3] William H. Bell , David G. Cameron , Luigi Capozza, A. Paul Millar ,

Kurt Stockinger, Floriano Zini, “OptorSim - A Grid Simulator for

studying dynamic data replication strategies”, International Journal of

High Performance Computing Application, vol. 17, no. 4, pp. 403-

416, February, 2003.

[4] David G. Cameron, Ruben Carvajal-Schiaffino, A. Paul Millar,

Caitriana Nicholson, Kurt Stockinger, and Floriano Zini, “UK Grid

Simulation with OptorSim”, in e-Science All-Hands Meeting,

Nottingham, UK, September 2003.

[5] Coles, J., “The evolving grid deployment and operations model within

EGEE, LCG and GridPP”, in Proceedings of the First International e-

Science and Grid Computing, 2005, pp. 97-115, July 11, 2005.

[6] Ian Foster, C. Kesselman, “Globus : A meta-computing infrastructure

toolkit”, International Journal of Supercomputer Application, pp. 115-

128, 1997.

[7] A. Chervenak, I. Foster, A. Iamnitchi, C. Kesselman, W. Hoschek, P.

Kunszt, M. Ripeanu, H. Stockinger, K. Stockinger, and B. Tierney,

“Giggle: A Framework for construction Scalable Replica Location

Services”, Global Grid Forum, pp. 1-17, 2001.

[8] Russel, Stuart J., Norvig, Peter (2003), “Artificial Intelligence: A

Modern Approach (2nd ed.)”, Prentice-Hall, pp. 88.

[9] Wikipedia contributors. (2013, March 20). Flooding Computer

Network.Available: http://en.wikipedia.org/wiki/Flooding_computer

_networking.

[10] A. Tanenbaum, D. Wetherall, Prentice Hall, “Computer Networks, 5th

Edition”, pp. 368-370.

[11] David G. Cameron, A. Paul Millar, Caitriana Nicholson, Rubén

Carvajal-Schiaffino, Kurt Stockinger, Floriano Zini, “Analysis of

Scheduling and Replica Optimisation Strategies for Data Grids Using

OptorSim”, Journal of Grid Computing, vol. 2, pp. 57-69, 2004.

449

