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 Abstract - This paper is concerned with sampled-data consensus 

of second-order delayed multi-agent systems with delayed-state-

derivative feedback. First, the delay decomposition technique is used 

for obtaining the consensus protocol based on sampled-data. Then, 

the stability theory of linear systems and algebra graph theory are 

employed to derive the necessary and sufficient conditions about the 

sampling period guaranteeing the achievement of stationary 

consensus. Last, simulations are provided to demonstrate the 

effectiveness of the theoretical results. 

 Index Terms - Second-Order Multi-Agent Systems, Consensus, 

Delayed-State-Derivative Feedback, Sampled-Data. 

1.   Introduction 

 Recently, consensus of multi-agent systems, due to its 

broad applications in many areas including cooperative control 

of unmanned air vehicles, automated highway systems, 

swarming, flocking, rendezvous, formation control, distributed 

sensor networks and congestion control in communication 

networks, has attracted a great deal of attention in various 

fields such as physics, biology, robotics and control 

engineering. In the past decade, considerable efforts have been 

devoted to consensus  problems. Vicsek et al. proposed a 

simple model for phase transition of a group of self-driven 

particles and numerically demonstrated complex dynamics of 

the model [1]. Jadbabaie et al. provided a theoretical 

explanation for the consensus behavior of the Vicsek model 

using graph theory [2]. Ren and Beard extended the results of 

[2] to the directed topology case and gave some more relaxed 

topology conditions [3]. Olfati-Saber et al. provided a 

theoretical framework for the analysis of consensus algorithms 

for multi-agent systems, an overview of basic concepts of 

information consensus in networks and the methods of 

convergence analysis for the algorithms [4]. More results can 

be seen in the survey [5], [6] and the references therein. 

 For most of the existing consensus protocols, only current 

states or delayed ones are used [7]-[10]. However, in certain 

cases, the derivatives of delayed states are necessary to 

guarantee the achievement of consensus. In [11], Cao et al. 

investigated consensus tracking problems of the first-order and 

second-order continuous-time multi-agent systems with the 

time-varying reference state, proving that when the virtual 

leader is available to only a portion of agents, the proposed 

consensus tracking protocol without delay-state-derivative 

feedback cannot guarantee the achievement of consensus 

tracking, whereas the proposed consensus tracking protocol 

with delay-state-derivative feedback can do. Moreover, for 

continuous-time multi-agent systems with communication 

delay, introducing delay-state-derivative feedback with the 

proper feedback gain can improve the consensus performance 

including the robustness against communication delay and the 

convergence speed of achieving the consensus [12]-[15]. 

However, just as all the authors of references [11]-[15] pointed 

out, in real applications, it is not easy for an agent to obtain the 

delay-state-derivative information of its neighborhood agents, 

i.e., it is hard to implement the continuous-time consensus 

protocols with delay-state- derivative feedback. In order to 

implement the consensus protocols with delay-state-derivative 

feedback, all the authors of references [11]-[15] proposed the 

strategy of approximately calculating the derivatives of 

delayed states by using the numerical differentiations in the 

case of sampled-data control. However, this approximate 

calculation might destroy the achievement of consensus, and 

the strategy of  choosing the sampling period for guaranteeing 

the achievement of consensus has been not provided in [11]-

[15]. 

 Based on the above consideration, the goal of this paper is 

to find conditions about the sampling period for the 

achievement of consensus of multi-agent systems with delay-

state-derivative feedback based on sampled-data.  

2.   Preliminaries and Problem Statement 

A. Algebra Graph Theory and Some Notations 

 Let ( , , )G V E A  be a weighted undirected graph with 

the set of nodes  
1 2
, , , NV v v v  , the set of edges 

E V V  and the weighted adjacency matrix [ ]ijA a with 

nonnegative adjacency elements aij . The node indexes of 

G belong to a finite index set  1, 2, ,I N  . An edge of G  

is denoted by ( , )ij i je v v . The adjacency elements 

associated with the edges are positive, i.e., 0ij ije E a   . 
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Moreover, we assume 0aii   for all i I . For the undirected 

graph G , the adjacency matrix A  is symmetric, i.e., ij jia a . 

The set of neighbors of node 
iv  is denoted by 

 :i j ijN v V e E   . The degree of node 
iv  is defined as 

i ij
j N

i

d a


  . The Laplacian matrix of G  is defined as 

L D A  , where 1 2( , , , )ND Diag d d d   is the degree 

matrix of G  with diagonal elements 
id  and zero off-diagonal 

elements. An important fact of L  is that all the row sums are 

zero and thus L  has a right eigenvector 1N  associated with 

the zero eigenvalue, where 1N  denotes the N -dimensional 

column vector with all ones. A path between two distinct 

nodes 
iv  and jv  is meant a sequence of distinct edges of the 

form 
1 1 2

( , ), ( , ),  , ( , )i k k k k j
l

v v v v v v . A graph is called 

connected if there is a path between any two distinct nodes of 

the graph. An important property of the Laplacian matrix, 

which is instrumental in the convergence analysis of consensus 

protocols, is that the graph G  is connected if and only if 

( ) 1rank L N  [16]. Thus, for a connected graph G , L  has 

one and only one zero eigenvalue and all the other eigenvalues 

of L  are positive. Without loss of generality, for a connected 

graph G , all the eigenvalues of  L  can be ordered 

sequentially in an ascending order as 

1 20 ( ) ( ) ( )NL L L      .  

 The following notations will be used throughout this 

paper. 0N  denotes the N -dimensional column vectors with 

all zeros. NI  denotes the N -dimensional identity matrix. Let 

R  denote the set of real numbers. For a given matrix M , 

det( )M denotes its determinant.  

B. Problem Statement 

 In a multi-agent system with N  agents, an agent and an 

available information flow between two agents are considered 

as a node and an edge in an undirected graph, respectively. 

Consider the system of double-integrator dynamic agents 

described by 

( ) ( )
, .

( ) ( )

i i

i i

t t
i I

t u t

 












&

&
                                   (1) 

where ( )i t R   and ( )i t R   represent, respectively, the 

position and the velocity of  the i th agent, and ( )iu t R  is 

the associated control input called the consensus protocol. 

 In order to simultaneously improve the robustness against 

communication delay and the convergence speed of achieving 

the consensus, in [13] Wu and Fang proposed the following 

consensus protocol with delay-state-derivative feedback: 

( ) ( ) { [ ( ) ( )]

          (1 )[ ( ) ( )]

          [ ( ) ( )]}. 

i

i i ij j i
j N

j i

j i

u t t a t t

t t

t t

     

    

    



     

    

    

         (2) 

where 0   represents communication delay between agents, 

0  is the control parameter, and   is the intensity of delay-

state-derivative feedback and satisfies 

 , 1 ( )(0, min )N L   . 

 According to the suggestion in [11]-[15], while 

implementing the consensus protocol (2), ( ) i t  and 

( ),j it j N    are replaced with ( ( ) ( ))i it t h h        and 

( ( ) ( )) ,  j j it t h h j N        , respectively, where 0h   is the 

sampling period. Then we can get the following consensus 

protocol with numerical differentiation: 

( )( ) { [ ( ) ( )]

(1 )[ ( ) ( )]

[( ( ) ( ))

( ( ) ( )) ]} .              

i

i i ij j i
j N

j i

j j

i i

tu t a t t

t t

t t h h

t t h h

     

    

    

   



     

    

    

    

        (3) 

 Decomposing communication delay   with respect to the 

sampling period h  yields 

mh                                          (4) 

where m  is a nonnegative integer and [0, )h  . 

 Using the period sampling technology and zero-order hold 

circuit, the following consensus protocol based on sampled-

data is induced from the consensus protocol (3): 

 

( ) ( )

{ [ ( ) ( )]

(1 )[ ( ) ( )]

[( ( ) ( 2 ))

( ) ( 2 )) ]},(

( )  , ;

( ) ( ) { [

i i

ij j i
j N

i

j i

j j

ii

i

i i ij
j N

i

u kh mh h kh h

a kh mh h kh mh h

kh mh h kh mh h

kh mh h kh mh h h

kh mh h kh mh h h

u t t kh kh

u kh mh kh a



  

  

  

 



  





    

    

      

     

     

  

   

 

( )

( )] (1 )[ ( ) ( )]

[( ( ) ( ))

( ) ( )) ]}, (

, .

j

i j i

j j

ii

kh mh

kh mh kh mh kh mh

kh mh kh mh h h

kh mh kh mh h h

t kh kh h

   

  

 


























 

     

    

   

  

         (5) 

 It is said that the multi-agent system (1) asymptotically 

achieves the stationary consensus, if lim ( ) ,t i t c   

lim ( ) 0,t i t i I    , where c is a constant. 

 In the following, we will find the necessary and sufficient 

conditions guaranteeing the system (1) applying the consensus 

protocol (5) to achieve the stationary consensus. 
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3.   Convergence Analysis 

 In this section, employing the stability theory of linear 

systems and algebra graph theory, we derive the necessary and 

sufficient conditions guaranteeing the system (1) applying the 

consensus protocol (5) to achieve the stationary consensus. 

The main results are as follows: 

 Theorem  3.1: Consider the second-order multi-agent 

system (1) with a fixed, undirected and connected network 

topology. The multi-agent system (1), applying the consensus 

protocol (5), achieves the stationary consensus if and only if 

all the roots of the equation 

 

4 3 2

1 2

3 2 2

2

2

( 2) (1 2 )

[( ) 2

] ( ) ( 2

2 2 2 3 ) ( )

( 2 3 ) ( )

( ) ( ) 0,  \ 1 .

m m m

m

i

i

i

i

z hr r z hr r z

rz h r h hr r

h L z h r r hr

h hr r h L z

r r h L z

h L i I

 

     

    

       

       

  

  



     

      

    

     

    

  

               (6) 

are within the unit circle. 

Proof: When [ ,  )t kh kh   , from (1) and (5) we obtain 

2

( ) ( )0 1
exp ( )

0 0( ) ( )

0 1 0
exp ( ) ( )d (7)

0 0 1

( )1 ( ) 2
( )

0 1 ( )   

i i

i i

t

i
kh

i
i

i

t kh
t kh

t kh

t t u kh mh h t

kht kh t kh
u kh mh h

kh t kh

 

 





 

    

 
   



     
          

   
      

    
        

 

which further leads to 

2

( ) ( )1

0 1( ) ( )

2
( ), 0,1, 2, ; .

 

i i

i i

i

kh kh

kh kh

u kh mh h k i I

  

  










    

    
        

 
 
 



              (8) 

Similarly, when [ , ) t kh kh h   , from (1) and (5) we get 

2

( ) ( )0 1
exp ( )

0 0( ) ( )

0 1 0
exp ( ) ( )d (9)

0 0 1

( )1 ( ) 2
( )

0 1 ( )    

i i

i i

t

i
kh

i
i

i

t kh
t kh

t kh

t t u kh mh t

kht kh t kh
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kh t kh



  


  

  

  




  



    

   
 

  

     
          

   
      

    
        

which further results in 

2

( ) ( )1

0 1( ) ( )

( ) 2
( ), 0,1, 2, ; .

  h

i i

i i

i

kh h khh

kh h kh

h
u kh mh k i I

  

  





 


 


   



    
        

 
 
 



       (10) 

Combining (8) and (10) yields the dynamics equation at the 

sampling instants: 

2

2

( ) ( ) ( )

( 2) ( )

(( ) 2) ( );

( ) ( ) ( )

( ) ( ), 0,1, 2, ;  .

i

i

i i i

i

i i ikh h kh h kh

h u kh mh h

h u kh mh

kh h kh u kh mh h

h u kh mh k i I

  

 



  



  

   

  

    

    












            (11) 

Noticing 1 0N NL  , we can rewrite the dynamics equation 

(11) in a compact form 

   

2

2

( ) ( ) ( ) ( 2)

{ ( ) [ ( )

(1 ) ( ) ( ( )

( 2 )) ]} (( ) 2){ ( )

[ ( ) (1 ) ( )

( ( ) ( )) ]};                       (12)

kh h kh h kh h

kh h L kh mh h

kh mh h kh mh h

kh mh h h h kh

L kh mh kh mh

kh mh kh mh h h

    

 

   

  

  

  



    

     

      

     

    

    

( ) ( ) { ( )

[ ( ) (1 ) ( )

( ( ) ( 2 )) ]}

( ){ ( ) [ ( ) (1 )

( ) ( ( ) ( )) ]},

0,1, 2, ;  .

kh h kh kh h

L kh mh h kh mh h

kh mh h kh mh h h

h kh L kh mh

kh mh kh mh kh mh h h

k i I

  

  

  

   

   

    

      

     

      

      

 























 

where 
1 2( )=( ( ), ( ), , ( ))

T
Nkh kh kh kh    and 

1 2 .( )=( ( ), ( ), , ( ))
T

Nkh kh kh kh     

 Taking z-transform of  the system (12) leads to 

12

( 1)

1 2

1

1 ( 1)

1

( ) ( ) ( ) ( 2){ ( )

[ ( ) (1 ) ( ) ( ( )

( )) ]} (( ) 2){ ( ) [ ( )

(1 ) ( ) ( ( ) ( )) ]};

( ) ( ) { ( ) [ ( )

(1 ) ( ) ( ( ) (

m

m

m

z z z h z h z z

Lz z z z

z z h h z Lz z

z z z z h

z z z z z Lz z

z z z

      

    

   

    

     

    



 





  



    

    

   

   

   

   

1

)) ]} ( )

{ ( ) [ ( ) (1 ) ( ) ( ( )

( )) ]}, 0,1, 2, ; .

m

z h h

z Lz z z z

z z h k i I



     







 

     

  















L

       (13) 
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where ( )z  and ( )z are the z-transform of ( )kh and 

( )kh , respectively. From (13) we get the characteristic 

equation about ( )kh  as follows:  

( 2) 4 3

2 1 2

3 22

2 2

det{[ ( 2) (1

2 ) ] [(( ) 2

) ( 2

2 2 2 3 ) ( 2

3 ) ( )] } 0.

m N m m

m m

N

z z hr r z hr

r z rz I h r h hr

r h z h r r hr h

hr r h z r

r h z h L



   

       

        

      

  

 

    

     

       

      

    

            (14) 

Due to the connectivity of the network topology, (14) turns 

into  

4 3

2 1 2

3
( 2)

2 21

2 2

( 2) (1

2 ) [(( ) 2

)
0.

( 2 2

2 2 3 ) ( 2

3 ) ( )] ( )

m m

m m

N
m N

i

i

z hr r z hr

r z rz h r

h hr r h z
z

h r r hr h hr r

h z r r

h z h L



  

      

    

       

     

 

 





 
 
 
 
 
 
 
 
 
 
 

    

   

     


     

     

  

   (15) 

Further simplifying (15) results in 

( 2) ( 1) 3 2

4 3 2

1 2

3 2 2

2
2 2

[ ( 2)

(1 2 ) ]

( 2) (1 2 )

[(( ) 2

) ( 2

2 2 2 3 ) ( 2

3 ) ( )] ( )

m N m

m m m

m

N

i

i

z z hr r z
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rz h r h hr r
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r h z r

r h z h L
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        (16) 

It is obvious that (16) has only one root equal to 1 and 

( 2) ( 1)m N m    roots equal to 0. Therefore, the system 

(12) is asymptotically stable if and only if all the roots of the 

equation (6) are within the unit circle.  

 Now it is assumed that all the roots of the equation (6) are 

within the unit circle. Denote the static state that the state 

( )i t  of the system （ 12 ） converges to as i


, i.e., 

lim ( ) ,k i ikh i I  

     and  

lim ( ) 0, .k i kh i I                           (17) 

 Thus, it is obtained from (12) that 

1 2( ,  ,  ,  ) 0T

NL       . Notice that 1 0N NL  , thus 

1 2( ,  ,  ,  ) 1 ,T

N Nc      i.e.,  

lim ( ) , .k i kh c i I                            (18) 

 It follows from (7) that when [ ,  )t kh kh   , 

2

1( ) ( )

0 1( ) ( )

( ) 2
{ ( )

  

[ ( ) (1 ) ( )

( ( ) ( 2 )) ]}.

t kht kh

t kh

t kh
kh h

t kh

L kh mh h kh mh h

kh mh h kh mh h h

 

 



  

  





  



      

     

    
        

 
 
 

      (19) 

From (19) we get that when [ ,  )t kh kh   , 

       
lim ( ( ) ( )) 0

lim ( ( ) ( )) 0

t

t

t kh

t kh

 

 









 

 
.                              (20) 

Similarly, from (8) and (9) we get that when 

[ ,  )t kh kh h   , 

   

2

2

1( ) ( )

0 1( ) ( )

( 2) ( )
{ ( )

 

[ ( ) (1 ) ( )

( ( ) ( 2 )) ]}

( ) 2
{ ( ) [ ( )
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( ( ) ( )) ]}.kh mh kh mh h h    

     (21) 

From (21) we get that when [ ,  )t kh kh h   , 

            
lim ( ( ) ( )) 0

lim ( ( ) ( )) 0

t

t

t kh

t kh

 

 









 

 
.                                 (22) 

Combining (20) and (22) leads to 

   
lim ( ( ) ( )) 0

lim ( ( ) ( )) 0

t

t

t kh

t kh

 

 









 

 
, [ ,  )t kh kh h  .     (23) 

Combining (17), (18), and (23) results in  

lim ( )
,

lim ( ) 0

t i

t i

t c
i I

t














 


      

 Based on the above analysis, the multi-agent system (1), 

applying the consensus protocol (5), achieves the stationary 

consensus if and only if all the roots of the equation (6) are 

within the unit circle. The proof is completed. 

 Remark  3.1: While implementing the consensus protocol 

(5), we must initialize ( ( ),  ( )),  1, 2, ,i ikh kh k      

2;  m i I  . In the above analysis, it is assumed that 

( ( ),  ( )) ( (0),  (0)),  1, 2, , 2;ii i ikh kh k m       i I , 

which does not affect the results obtained in Theorem 3.1. 

 Remark 3. 2: Although the condition that all the roots of 

the equation (6) are within the unit circle is necessary and 

sufficient, for the general communication delay, it is hard to 

464



derive from this condition the explicit allowable scope of the 

sampling period that guarantees the multi-agent system (1), 

applying the consensus protocol (5), to achieve the stationary 

consensus. Therefore, the results of Theorem 3.1 are mainly 

used for testing the effectiveness of the sampling period 

guaranteeing the achievement of stationary consensus. 

 Remark  3.3: It can be seen from the delay decomposition 

expression (4) that if 0m   and 0  , then 0 h    , i.e., 

the communication delay is less than the sampling period. In 

this case, the consensus protocol (5) with the general 

communication delay degenerates into the consensus protocol 

with the small communication delay: 

 

( ) ( )

{ [ ( ) ( )]

(1 )[ ( ) ( )]

[( ( ) ( 2 ))

( ) ( 2 )) ]}, , ;(
( )
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{ [ ( ) ( )]

(1 )[ ( ) (
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i
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          (24) 

and we have the following corollary: 

 Corollary 3.1: Consider the second-order multi-agent 

system (1) with a fixed, undirected and connected network 

topology. The multi-agent system (1), applying the consensus 

protocol (24), achieves the stationary consensus if and only if  

 2 ( ) 0,  \ 1ih r L i I   ,                           (25) 

 ( ),  \ 1ih L i I  ,                             (26) 
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Before proving Corollary 3.1, we need to provide the 

following lemma. 

 Lemma 3.1: All the roots of the equation 
4 3 2

3 2 1 0 0s a s a s a s a     , where 0 1 2 3,  ,  ,  a a a a R , 

are within the unit circle, if and only if the five inequalities 

3 2 1 01 0a a a a     , 0 1a  ,
2

0 0 3 11 | |a a a a   ,

2 2 2 2
0 0 3 1 0 0 2 2 0 1( 1) ( ) | ( 1)( ) (a a a a a a a a a a      

3 0 3 1)( ) |a a a a  and 3 2 1 01 0a a a a      hold 

simultaneously( [17]). 

The proof of Corollary 3.1 is given below. 

Proof:  When 0 h    , the equation (6) degenerates into 
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             (30) 

It follows from Lemma 3.1 that all the roots of the equation 

(30) are within the unit circle if and only if the inequalities 

(25), (26), (27), (28) and (29) hold simultaneously. The proof 

is completed.  

4.   Simulations 

 In this section we provide the numerical simulations to 

illustrate the correctness of the above results. Here we consider 

the second-order multi-agent system (1) with the 

interconnection topology described in Fig.1. Without loss of 

generality, assume that the initial states of four agents are 

chosen as 1(0) 1   , 2 (0) 2   , 3(0) 1  , 4 (0) 2  , 

1(0) 1  , 2 (0) 2  , 3(0) 1   and 4 (0) 2   . Here it is 

assumed that 0.15  , 1r  and 0.1  . 
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Fig.1.   A weighted, undirected and connected graph composed of four agents. 

 

 We illustrate the effectiveness of Theorem 3.1 by 

illustrating the effectiveness of Corollary 3.1. Numerical 

simulations are shown in Fig. 2 and Fig. 3, respectively.  

 
Fig.2.   The states of the system (1) applying the protocol (24) with 0.3h   

 

Fig.3.   The states of the system (1) applying the protocol (24) with 0.7h  . 

 From Fig. 2, we can find that when 0.3h  , which 

satisfies the condition given in Corollary 3.1, the given multi-

agent system (1) applying the consensus protocol (24) 

achieves the stationary consensus. 

 From Fig. 3, it can be seen that when 0.7h  , which does 

not satisfy the condition given in Corollary 3.1, the given 

multi-agent system (1) applying the consensus protocol (24) 

cannot achieve the stationary consensus. 

 From the above simulations, the effectiveness of 

Corollary 3.1 is numerically testified, which further illustrates 

the effectiveness of Theorem 3.1. 

5.   Conclusions 

 In this paper, we have considered the sampled-data 

consensus problems of second-order delayed multi-agent 

systems with delayed-state-derivative feedback. Employing the 

stability theory of linear systems and algebra graph theory, we 

have obtained the necessary and sufficient conditions 

guaranteeing the achievement of stationary consensus. A 

future work is to extend the results of this paper to the case of 

second-order multi-agent systems with a directed switching 

network topology and the time-varying communication delay. 
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