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 Abstract - In this paper, a new algorithm is proposed for 
computing weights fusion of fixed-interval Kalman smoothers in the 
linear minimum variance sense. The QR decomposition of matrix is 
presented for the weights for discrete time-varying linear stochastic 
control systems with multiple sensors and correlated  noises. 
Theoretical predictions and numerical evidences indicate that  the 
algorithm of QR decomposition of matrix to value the weights fusion 
fixed-interval Kalman smoothers can save dramatically the memory 
and alleviate considerably the computational burden, but don’t  loss  
any numerical precision. 

Keywords - fixed-interval Kalman  smoothers ; the QR decom-
position of matrix ;multiple sensors1

1.  Introduction 

 

 With the development of the times, especially in the 21st 
century,Modern communication technology and microelectr-
onics technology and so has been rapidly, developed, 
Specifically in terms of military, economics use multi-sensor 
to these complex background environment, so that people are 
able to get more than single-sensor data information to 
facilitate the extraction and analysis, the people to make the 
analysis more accurate, machine running the more stable. 
However, The more sensor is the more data people to deal 
with and makes people have to make a more and new in-depth 
study of multi-sensor information processing, in order to 
obtain more effective information processing for current and 
future. Although It has become popular areas for people to 
study, it has not yet formed a mature scientific system, its 
development began in the military field, track positioning, 
now, more and more use of things such as the rise of the 
multi-sensor industry to the lives of ordinary people, so far, 
the development of the industry, has made a good start, 
Wiener [1] put forward Wiener filtering method of filtering 
noise from the contaminated signal in the frequency domain, 
and reached the real optimal estimation of the signal, in the 
linear minimum variance sense both filters. The disadvantage 
is that require steady signal and store all historical data to 
calculate engineering use, this method of computation and 
storage are too enormous to promote. Carlson [2] presents the 
famous federated square root filter. That use the upper bound 
of the process noise covariance matrix to replace the process 
noise covariance matrix, also considered the estimation error 
correlation between subsystems, given fusion filtering 
algorithms in the linear minimum variance sense ,But, to some 
extent, it is conservative because of using the upper bound of 

1 This research is partially supported by the Combination of the Ministry of 
education project in Guangdong Province. 

the variance matrix of the process noise instead of the variance 
matrix itself. Kalman [3] raise filtering kalman algorithm in 
the time domain, it use Riccati equation to establish equation 
of state , using recursive filtering algorithm does not require a 
lot of storage, conform to the development of the electronic 
computer, military and space technology to overcome the 
shortcomings of the wiener filtering method has been widely 
used. Literature [4] gives a fusion criterion weighted by 
scalars for systems with multiple sensors. But the assumption 
for the state estimation errors between any two uncorrelated 
sensors doesn't accord with the general case. So [4] only get a 
sub-optimal information fusion filter. Distributed fusion filter 
requires each subsystem with the same dimension of the 
observation matrix in the  [5].This makes it has limitations in 
the application, In practical applications, due to the system 
model is unknown, and maybe change with time-varying, 
Also, because of the different types and the observation 
position of the respective sensors, the system model 
describing the target of the respective sensors may also be 
different, Thus, either a single model of the system is 
sometimes difficult to describe the state of the actual motion 
of the system. Kim [6]and Chen et al. [7] give the optimal 
fusion filter for systems with multiple sensors based on the 
maximum likelihood estimation, respectively, and assume the 
process noise to be independent of the measurement 
noises.But its derivation requirements .Assuming the 
estimated error is based on normal distribution. Weighting by 
matrices need to calculate the inverse matrix, the large amount 
of calculation . 

This article use the QR decomposition method, the 
matrix inverse calculation problem is solved to some extent, 
promote the weighted matrix algorithm optimization. 
Distributed multi-sensor information fusion has high 
reliability, viability and short decision-making time and cause 
of widespread concern, and has been extensively studied. 
Kalman filter is mainly used for the integration of low-level 
real-time dynamic multi-sensor redundant data. This method is 
recursive, the statistical properties of the measurement model 
to determine statistical significance optimal integration and 
data estimated. If the system has a linear dynamic model and 
system sensor error Gaussian white noise model, the Kalman 
filter for the fusion of data provide only statistical significance 
optimal estimation. Kalman filter recursive features make the 
system does not require a lot of data storage and computing. 
However, a single Kalman filter statistics on the combination 
of multi-sensor system, there are many serious problems 
EKF'S advantages: the error of the linear extent of the 
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instability of data processing or system model can effectively 
overcome the fusion process the impact. the overall physical 
laws better understood. 

2.  Research method 

In this paper, three distributed optimal weighted fusion 
fixed-interval Kalman smoothers with a three-layer fusion 
structure are given for discrete time-varying linear stochastic 
control systems with multiple sensors and correlated noises 
based on three optimal matrices weighted fusion algorithms in 
the linear minimum variance sense. this will be smaller 
computational higher accuracy than direct matrix weight, The 
third chapter is divided into three parts, the first part: the basic 
formula assumes the second part of the matrix weighting 
method QR the matrix de-composition wears fusion, the third 
part of the simulation comparison. The simulation example in 
a tracking system with three-sensors is shown in Section 5 
where local, distributed fusion and centralized smoothers are 
compared. Finally, the conclusion is drawn. 
 
 
 
 
 
 
 
 
 

  
 
 

 
 

 
Fig.1. Distributed state fusion filtering principle 

 

3.  Results and Analysis 

A . Preliminaries 
Consider the discrete time-varying linear stochastic control 
system with L sensors，Target state model and measurement 
model are described below： 
Target state model and measurement model are described 
below. 

( 1) ( ) ( ) ( ) ( ) ( ) ( )                 1x t t x t B t u t t w t+ = Φ + +Γ （） 
                                  

( ) ( ) ( ) ( ), 1, 2, ,                         2i i iy t H t x t v t i L= + =  （） 

where ( ) nx t R∈  is the state, ( ) mi
iy t R∈  is the measurement, 

( ) pu t R∈  is a known control input, ( ) rw t R∈ and 
( ) mi

iv t R∈ are white noises, and  , ( )tΦ , ( )B t , ( )tΓ , ( )iH t , are 
time-varying matrices with suitable dimensions. The subscript 
i denotes the  the sensor and   is the number of sensors.  

In the following , nI denotes the n n×  identity 
matrix,and 0 denotes the zero matrix with suitable dimension. 
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where ( )iiR t is the variance of ( )iv t , i.e., ( )iR t the symbol E 
denotes the mathematical expectation, the superscript T 
denotes the transpose, and tkδ  d is the Kronecker delta 
function. 

Assumption 2. The initial state (0)x is independent of  

( )w t and ( )iv t , i =1,2,..., L , and 
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(a)The system is a known time sequences, or is a linear 
function about 

( ( ), ( 1), (1)), 1, 2, ,i i iy t y t y i L− =   

(b) Unbiasedness, namely, 0[ ( | )] [ ( )]E x t N E x t
∧

=  
(c) Optimality, namely, to fi nd the optimal weights 

( ) ( )N
iA t ，i =1,2,...,  L to minimize the traces of variance 

matrices of the weighted fusion smoothers 

0ˆ ( | )x t N respectively.  
(d)the initial state of the system is not  related 

B .  QR Decompose Definition 
If  n × n real non-singular matrix A can be decomposed 

into the orthogonal matrix Q and the real non-singular upper 
triangular matrix R, ie A = QR, we claimed that the 
decomposition of the matrix A QR decomposition; thus A is 
m*n  column matrix  of full rank, if A = QR, where Q is the 
m*n matrix  QTQ = E (Q  is the orthogonal matrix of colum-
ns), R is a  non singular  upper triangular matrix of the matrix 
A, also known as QR decomposition. 

C .  Fusion process 
Based on the local smoothers and cross-covariance 

matrices , one has the following distributed fusion fixed -
interval smoothers in the linear minimum variance sense. with 
multiple sensors has the optimal weighted fusion fixed  interval 
Kalman smoothers, 
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where local smoothers 0ˆ ( | )x t N ,i=1,2,..., L are computed by 
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where the gain matrix ( | )iM t t k+  is computed by 
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The optimal matrix weightes , ( )
1 ( )NA t ,i =1,2,..., L are 

computed by 
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The variance of the matrix weighting optimal fusion smoother 
is computed by 
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The fixed-interval smoothing error variance matrix is given by 
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where covariance matrices where ( | )ijP t N  i, j =1,2,..., L  
are computed by (12) and (13).. 
Among： ( | ) [ ( | ), ( | )]w v

i i iG t t k G t t k G t t k+ = + +  are 
defined by 
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The application of  QR decomposition in weight matrix : 

QR decomposition of the covariance matrix:                                                                            
( ( | ))ij nl nl ij ijP t N Q R× =                                                     (17) 
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Yield: 
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4.  Conclusion 

Consider the tracking system with five-sensors: 
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( )( ) ( ) ( ) ( ), 1, 2, ,                           22i i iy t H t x t v t i L= + =                                                                                           

where T is the sampling period, i ( )iy t ，i= 1, 2, 3 are the 
measurement signals of five-sensors with the measurement 
matrices       (:,:,1) [1,0,0]H =       (:,:, 2) [0,1,0]H =  

(:,:,3) [0,0,1]H = (:,:, 4) [0,0,1]H = (:,:,5) [1,1,0]H =  
respectively, the Gaussian white noise ( )w t with zero mean 

and variance 1wσ = , and Gaussian white noise, ( )i tε i=1,2,3 

,4,5with zero mean and varance 
1ε

σ =5, 
2ε

σ =5,
3ε

σ =5, 

4ε
σ =5,

4ε
σ =5,are independent of ( )w t . 
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Fig. 2. Comparison of the fusion center 0P and Comparison of fusion results 

In the simulation, we take T = 300, [ ](0) 0;0;0x =  , 
0 0.1 (3)P eye= ∗           

N = 300.，By the above figure 

although  0( | ) ( | )QRtrP t N trP t N<  ,QR decomposition 
weighted  fusion filter Still changed fault tolerance  of 

ˆ ( | )ix t N  in a certain extent. 
The use of the QR decomposition method, the matrix in-

verse calculation problem is solved to some extent, promote t-
he weighted matrix algorithm optimization. There is a certain 
sense in the engineering application. 
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