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 Abstract - In this paper, the problem on stability analysis of 

generalized recurrent neural networks with a time-varying delays is 

considered. Neither the differentiability, the monotony on these 

activation functions nor the differentiability on the time-varying 

delays are assumed. By employing a new Lyapunov-Krasovskii 

function, a linear matrix inequality (LMI) approach is developed to 

establish sufficient conditions for RNNs to be globally asymptotically 

stable. The proposed stability results are less conservative than some 

recently known ones in the literature. Finally an example is given to 

verify the effectiveness of the present criterion. 

Index Terms: Recurrent neural networks; Global asymptotically 

stability; Time-varying delays; Linear matrix inequality 

1.  Introduction 

It is well known that delayed neural networks have a wide 

range of applications in many fields such as pattern 

recognition, image processing, associative memory, and 

optimization problems [1–4]. Many interesting results on 

global asymptotic stability and global exponential stability 

have been obtained in recent years. It is worth mentioning that 

the obtained results in [5–12] are based on the following 

assumptions: )(i the involved time-delays are constant delays 

[5–8] or with time-varying delays terms but continuously 

differentiable [9-12], and )(ii the activation functions are 

monotony or differentiability [13]. However, in many 

situations, time delays occur frequently and vary in an 

irregular fashion, and sometimes, they may be not 

continuously differentiable. In such case, those results can not 

be applied. The purpose of this works is to improve and 

complement the results in [5–13] and present a new criterion 

concerning, the global asymptotic stability of recurrent neural 

networks with time-varying delays, which is independent of  

the time-varying delays and does not require the 

differentiability of delay functions. An example is given to 

verify the effectiveness of the present criterion. 

Notations. The notations are quite standard. Throughout 

this paper, nR and mnR   denote, respectively, 

the n dimensional Euclidean space and the set of all mn real 

matrices. The superscript ''T denotes matrix transposition. The 

notation YX   (respectively, YX  ) means that X and Y are 

symmetric matrices, and that YX  is positive semi-definite 

(respectively, positive definite). If A  is a matrix,  max  

(respectively,  min ) means the largest (respectively, smallest) 

eigenvalue of A . Sometimes, the arguments of a function or a 

matrix will be omitted in the analysis when no confusion 

arises. 

2. System description  

In this paper, we consider the following model:  

JtdtxBftxAftCxtx  )))((())(()()(    0t                (1) 

where n  corresponds to the number of units in a neural 

network
nT

n Rtxtxtxtx  ))(,),(),(()( 21  is the neuron state 

vector; ,)))((,)),(()),((())(( 2211
T

nn txftxftxftxf   

.))))(((,)),((())),(((()))((( 222111
T

nnn tdtxftdtxftdtxftdtxf    

jf  is activation function; )(td j  corresponds to the 

transmission delay and satisfies jj dtd  )(0 （ jd  is  a  

constant); ),,,,( 21 ncccdiagC  0ic  represents the rate 

constant with which the i th unit will reset its potential to the 

resting state in isolation when it is disconnected from the 

networks and without external inputs; nnijaA  )(  is referred to 

as the feedback matrix, nnijbB  )(  represents the delayed 

feedback matrix. T
nJJJJ ),,,( 21  is the constant external 

input vector. The initial condition of model (1) is of the 

form ),()( ssx ii  ,0 sd   ,max
1

i
ni
dd


  where 

),,2,1( nii  is bounded and continuous on  0,d . 

Moreover, the neuron activation functions satisfy the 

following assumption: 

(H)They are assumed to bounded and there exist two diagonal 

matrices ),,,( 21 nUUUdiagU      and 

),,,( 21 nFFFdiagF   such that  

i
ii

i F
ff
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                                                       (2) 

for all .,,2,1,,, niR    

To prove our main results, we need the following lemmas: 

Lemma 1 [14].Given constant matrices QP,  and R , where 

QQPP TT  , , then the following LMI: 
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is equivalent to the following conditions 

,0Q   .01   TRRQP  

Lemma 2 [15]. Supposed that   RRkkk :,, 321  are 

continuous and strict monotonous functions satisfying 

,0)0()0( 21  kk and when ,0s ;0)(,0)(,0)( 321  sksksk  

when ,s .)(1 sk then , the equilibrium point is 

globally asymptotically stable if there exist a continuous 

functions V : ,RRR n   such that the inequality 

),(),())(( 21 d
xkxtVtxk  nRxRt  ,  and  

).)(())(,( 3 txktxtV   here )(max 

xx

tdtd 
 ,             

V  is the time derivative of V along the trajectories of (1). 

3. Main results and proofs 

Theorem 1. Let x  be the equilibrium point of the system 

(1).under assumption (H), the equilibrium point is globally 

asymptotically stable if there exist a symmetric positive 

definite matric P , for diagonal matrices  

0),,,( 21  ndiag   , 

0),,,( 21  ndiag   , 

0),,,( 112111  nmmmdiagM   and  

0),,,( 222212  nmmmdiagM   such 

that the following LMI holds: 
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Where   UFP and all the matrices here are 

constant. 

Proof. To simplify the asymptotical stability analysis of (1), 

we shift the equilibrium point 
x of (1) to the origin by letting 

 xtxty )()(  and then the system (1) can be transformed 

to: 

))),((())(()()( tdtyBgtyAgtCyty    0t             (4)                          

where the transformed neuron activation function is: 

).())(())((   xfxtyftyg                                  (5)                             

according to (H),it can be easily checked that the transformed 

neuron activation function satisfy: 

i
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i F
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Now, we consider the following Lyapunov-Krasovskii 

functional candidate for model (4) as: 
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Calculating the time derivative of ))(( tyV along the solution of 

system (4), we have 

 ))(()()(2))(( tyAgtCyPtytyV T   

+  )))(((2)))(((  tygtdtyBg T  

 )))((())(()( tdtyBgtyAgtCy   

 ))(()())((2 tyAgtCyUFtyT   

)))((( tdtyBg                                                   (8) 

On the other hand, in view of (2), we have  

0))())(())(())(((  tUytygtFytyg               (9) 
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Then consequently we have   
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Denoting TTTTT tdtygtygtdtytyt ))))((())(())(()(()(   

and combing (8), (11),  it  is  clearly  that  

)()())(( tttyV T                           (12)                                           
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and  UFP . 

Using the lemma 1, we obtain .0  

Following (3) and (12), we have  

2

max )()())(( tytyV                   

2

max )())(( ty   

).)((3 tyk                                             (13) 

With lemma 2, the equilibrium point x of (1) is globally 

asymptotically stable. The proof of this theorem is now 

complete.  

Remark 1.The assumption on the time-varying delays in this 

paper is bounded but not necessarily differentiable. However, 

the criterions in [7], [8] can only be applied to CNNs with 

constant delay , it is obvious that our results are more 

comprehensive and effective, in [12] the differentiability of the 

time-varying delays was required. 

Remark 2. In [5, 8, 12], the authors investigated the global 

asymptotic stability of equilibrium point of model (1) under 

the following assumptions (H1) and (H2) or (H3): 

(H1)The activation functions if  ),2,1( ni   

are bounded. 

(H2)There exists a positive diagonal matrix F , 

),,( 21 nFFFdiagF  such that 

i
ii F
ff









 )()(
0  for all .,,  R  

(H3)There exists a positive diagonal matrix 

),,,( 21 nLLLdiagL   such that  

  Lff ii )()(  for all R, . 

However, in this paper, the differentiability of activation 

functions is not required. In addition, the constants in 

assumption (H) are allowed to be positive, negative or zero. 

Clearly, Assumption (H) of this paper is weaker than those 

given in [5, 8, 12]. 

Corollary1. Under assumption (H2), model (1) has a unique 

equilibrium point, which is globally asymptotic stable if there 

exist a positive definite matrix P and four positive diagonal 

matrices  , , 1M and 2M such that the following LMIs hold: 
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where  FP . 

Corollary2. Under assumption(H3),model(1)has a unique 

equilibrium point, which is globally asymptotic stable if there 

exist a positive definite matrix P and four positive diagonal 

matrices  , , 1M and 2M such that the following LMIs hold: 

2

2
2

1

1
2

2

0

2

0

2)(

0

)(2

FM

MF

B

FMCA

MFCFCPPC

T

T

















  

 

0

2

)(

2

)(

2)(2

0

2)(

2

2

1

1
























M

B

FM

B

B

MA

FMCA

T

               (15) 

where ).(  FP  

4. Numerical example 

In this section, we present a simulation example so as to 

illustrate the usefulness of our main results. Our aim is to 

examine the global asymptotic stable of the delayed RNN (4) 

with network parameters given as follows: 
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xxf sin5.0)(1  , xxf sin)(2  . 

The activation functions satisfy Assumption (H) with 
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By the Matlab LMI Control Toolbox, we find a solution to the 

LMI in (3) as follows 
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 Therefore, it follows from Theorem 1 that the RNN (4) with 

given parameters is globally asymptotic stable. 

5. Conclusion  

This paper has provided new sufficient condition 

guaranteeing global asymptotic stability of the equilibrium 

point for the recurrent neural networks with time-varying 

delays and generalized activation functions. Neither the 

differentiability, he monotony on these activation functions nor 

the differentiability on the time-varying delays are required. 

The developed stability conditions are in terms of LMIs, which 

can be checked easily by recently developed algorithms that 

solves LMIs. Furthermore, the proposed stability conditions 

are less conservative than some recently known ones in the 

literature, which has been demonstrated via an example with 

simulation. For future investigation, we will apply other 

method to stochastic neural networks with Markovian jumping 

parameters and/or mixed time-delays, so that the main results 

can be extended. 
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