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AbstractAbstractAbstractAbstract ----We determined the best pan by two models. At first,
we established a prism model with great heat convection on profiles
through reasonable simplification. According to thermophysics, we
derived partial differential equations to describe temperature field
distribution of pans. However, the equations are too complex. We
offered decoupled boundary conditions for simplification. But the
solutions are beyond our capability. We conducted numerical
simulation based on the finite element method. Through ANSYS, we
obtained heat distribution of various shapes concluded a trend.

Index Terms - Finite element method; Heat distribution;
Temperature filed;

1.1.1.1. IIIIntroductionntroductionntroductionntroduction

In the given problem description, the heat distribution of
round and rectangular pans is hinted: when baking in a
rectangular pan, heat is concentrated in the 4 corners and the
product gets overcooked at the corners while in a round pan
the heat is distributed evenly over the entire outer edge and the
product is not overcooked at the edges. Following this
reasoning, we expect that the heat distribution will become
increasingly even as the number of pan edges increases.

In our proving model, we started by the physical
phenomenon and gave the heat conduction equations of three-
dimensional cases. Although we understand how to describe
this phenomenon through mathematical language, the analytic
solutions of partial differential equations, however, are too
complicated for us [1]. Under such circumstance, we turned to
the finite element method for numerical solutions. Taking
advantage of ANSYS, we successfully simulated the three-
dimensional temperature filed and presented the image and
analysis of our results, testifying our expectation to some
extent.

2.2.2.2. ModelModelModelModel 1111

A. TablesModel Establishment
Equations Derivation of Three-dimensional Temperature

Field:

Fig.1.infinitesimal hexahedron

In a simplified prism， we randomly select a infinitesimal
hexahedron (Fig.1.). We apply the Fourier Law [6]:
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The X-component increased heat in unit time of the
infinitesimal area:
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The Y-component increased heat in unit time of the
infinitesimal area:
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The Z-component increased heat in unit time of the
infinitesimal area:
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The overall increased heat in unit time of the infinitesimal
area:
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The necessary heat in unit time for the temperature rise of the
infinitesimal area:
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On the basis of the law of conservation of energy, equating the
heat increased with the heat necessary yields:
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The front of the equation is a linear second order partial
differential equation ， whose solution needs initial and
boundary conditions. In our case：The initial condition:

( ) 0, , 0T x y T=
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( )4n ≥

On the basis of our assumptions ， we give the boundary
conditions:

Because of the adiabatic property of the upper and lower
surfaces , we give the Neumann boundary condition:
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According to the heat convection boundary conditions on the
four side surfaces, we give the third boundary condition:
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B. Case Analysis
We take advantage of ANSYS to conduct numerical

simulation to temperature filed of pans[2].
Node selection: 8-node 70 unit.
Meshing: tetrahedral meshing
Parameter selection: after consulting data of ovens and

stainless steel, we select the parameter, listed in Table 1.

Table 1 Parameter selection

parameparameparameparame
terterterterssss

meaningsmeaningsmeaningsmeanings valuvaluvaluvalu
eeeessss

unitunitunitunitssss

0T initial
temperature

80 [ ]oc

T∞ air temperature
in the oven

190 [ ]oc

h Convective heat
transfer
coefficient

100 2[ / ]oW m c⋅

c specific heat
capacity

450 [ / ]oJ kg c⋅

ρ density 7800 3[ / ]kg m
k Thermal

conductivity
40 [ / ]oW m c⋅

A Surficial area 0.038 2[ ]m

Through ANSYS, temperature filed distribution, fitted
curves of marginal heat distribution and the temperature at a
corner as a function of time ( attached in the appendix) are
plotted.

C. Results
By Figures above, we draw the following conclusions:
� For any polygon other than round, marginal unevenness

of heat distribution does exist and is centered at the
corners while the heat distribution of round pans is
uniform.

� Fitted curves of marginal heat distribution are always
concave, approaching their minimum at the middle of
each side and maximum at the end, which means heat at
the edge is less than heat at the corner.

� Heat distribution unevenness decreases gradually as n
increases and for a round, heat unevenness is negligible.

� The results of our model meets the phenomenon
described in the problem: the heat is distributed evenly
over the entire outer edge in a round pan; and in a
rectangular pan heat is concentrated in the 4 corners and
the product gets overcooked at the corners (and to a
lesser extent at the edges). Therefore, the
reasonableness of our model is certified to some
extent.

3.3.3.3. ModelModelModelModel 2222

A. Model Establishment
According to the second and the third assumptions, we are
able to select a pan of the most width to determine the
minimum W (width of the oven)[3]. Connecting any two
adjacent vertexes and its geometric center of a regular polygon
one gets a triangle as Fig. 7.
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Fig. 8 basic triangle

Assume h is the vertical distance from the center to a side. a
is the length of a side. On the basis of geometric features of
regular polygon, we have:

n
π

φ = 2 tana h φ=

Given the pan must have an area of A, we can write:
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B. The Min-Width

Fig. 9 hexagon
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According to our assumptions, to put in more pans, we have
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Fig. 11 comparison of odd and even

From the picture, we can safely draw the conclusion:
even-edge pans are better in terms of the maximum number. In
our subsequent discussion, we study even-edge polygons only.

C. The Max-Width
Because pans of any shape should be able to fit into the

oven, the width of oven W is not less than the max-width of
pans. We give outD as a function of n
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Fig. 12 Index of Maximum width

We see ( )g n is a monotone decreasing function (so is as

in

L
D ), approaching to and ( ) 1g n ≤ , Again N may
be equal to [ ]0n but we still have [ ]0n N≥ .

This means the value of N gradually decreases as n
increases and the shape of maximum number is square.
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However, we have never discussed the number of rectangular
pans.

Assume a width to length ratio of /w l for the rectangular
pans. For a maximum number, the length of the pan equals the
width of the oven:

,l W l w A= × =

Then we get the maximum number of rectangular pans:
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Have 1n divided by 0n to compare them:
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, which means the shape of the maximum number is
rectangle

So far, we give our conclusion for this number model:

� the rectangle is the shape of potential maximum number

� From square to round, the number of regular polygon
gradually decreases and approaches the number of round
pans, which is the minimum.

4.4.4.4. ResultResultResultResult

When heated under a certain temperature, the heat
distribution over edges of different pans are studied. After
numerical simulation, we found the points of maximum
temperature in a rectangular pan are at the corners and the
relative higher temperature always makes the food at corner
overcooked. But as number of edges increases, heat
distribution on a pan surface tends to be more uniform.
Theoretically, marginal temperature distribution on a round
pan reaches evenness. Therefore,use pans with more edges,
there is a lower possibility for you to get overcooked food.
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