
Analysis and Design on Security of SQLite* 

Liu Haiyan, Gong Yaowan 

Department of Information Engineering   Armored Force Engineering Institute, Beijing, China 

lhy940@163.com,    gogogyw@gmail.com 

                                                           
*
 This work is partially supported by 2012CJ061. 

 Abstract - This paper is to resolve the security problem of 

SQLite. The paper first analyzes some security methods commonly 

used in Database Area, as well as the current mechanism of SQLite. 

Then discusses the authentication, access control, encryption, audit, 

as well as the backup and restore mechanism of SQLite. At last, this 

paper combines authentication and encryption together, with the help 

of those interfaces prepared by SQLite, it implements an encrypting 

SQLite by adding codes of deriving keys, encryption and loging. 

 Index Terms - Database, Security, Enryption, SQLite. 

1.  Introduction 

 SQLite is an open source database system for small scale 

applications, which provides most support for standard 

SQL92, and has many advantages, such as high storage 

efficiency, fast query operation, small memory requested and 

so on. It has been widely used in embedded systems. Since 

SQLite is open source, it can be ported on to different 

operating systems easily. It’s codes can also be modified to 

meet specific functional requirements. 

 Original SQLite basically does not provide any security 

control mechanisms. It uses a single file to store the entire 

content of the database. If only someone gets the database file, 

he can get the data stored just by using the SQLite tool, or 

even by using a generic text editor, e.g. notepad on Windows. 

To those systems who need security protections, this feature 

becomes the fatal defect of SQLite[1,2]. Basing on the analysis 

of the general database security mechanisms, the paper designs 

some security mechanisms for SQLite, which enhances its 

security while maintains its original advantages. 

2.  Security mechanism of database 

A database is usually used to store various important 

information of a company, organization or a government 

department, so the security of database is critical to an 

information system. Whether for a single host application or a 

network application, a database may have to face various 

security threats[3,4]. The security mechanisms of database are 

those technical mehods adopted to protect the database and to 

prevent the illegal users from unauthorized access, stealing, 

changing or destroying the data stored. 

2.1 some commonly usedsecurity mechanism of database 

Nowadays, the mainstream databases all adopt some 

security measures. In addition to the essential mechanisms to 

guarantee data consistency and integrity, they usually adopt 

some other measures[3,4,5], such as access control, data 

encryption, authenticaiton and audition, etc. 

1) Authentication  

The user or application provides its own identity, and the 

database authenticates the validity of the user or application. 

Only legitimate users or applicaions can access the data in the 

database. User authentication is the base of all other security 

mechanisms, only after the authenticaion, the certification and 

audition can be carried out. 

2) Access control 

Access control of a database management system means to 

grant different permissions to different users, and to ensure 

that a user can only access the data authorized to him. 

Currently, some large-scale databases, such as Oracle, 

SQLServer, etc. adopt the role based access control 

mechanism, i.e. the system assigns different roles to users, 

such as db_owner, dbcreator, securityadmin,etc. and the 

database grant diffferent authority according to the roles, a 

user can perform operations only granted to the roles which he 

belongs to. 

3) Encryption 

The authentication and the access control mechanism are 

carriced out by the database management system database 

systems( DBMS ), they achieve the access control mechanism 

of database. However they lack the effective protection to the 

stored data. For example, if the attacker make use of the 

vulnerability of the operating system or database, or by 

physical contact to the database system, they can steal or see 

the data by operate on the database file. To encrypt the data 

stored in the database is to protect the data against such 

threats. 

4) Audition 

 Audition of a database is to monitor and record the user 

operaitons on the database, these records are used for post 

analysis of database to find out the attacker clues. 

5) Backup and recovery 

Backup and recovery of the database is used when the 

database is unrecoverable failed. First the database is backup 

regularly, then the database is restored to a former consistent 

state by used of this backup. 

2.2  security mechanism of SQLite 

The transaction processing of SQLite is quite reliable, it 

can always keep the consistency and integrity of data even 

when the system break down or power off. However, 

compared with some largescale database systems, its 

consideration on security is rather rare. 

SQLite is not the kind of database which is based on 

service, so the database itself has no access control and 

International Conference on Computer, Networks and Communication Engineering (ICCNCE 2013)

© 2013. The authors - Published by Atlantis Press 585



authorization mechanism. Since it stores the whole database in 

a single file, it relies on the file access control mechanism of 

the operating systems, that is to say, all the legitimate users of 

the operating system can access the database, as long as they 

have the read or write permission on the database file. If you 

can access the SQLite database file, you can use the program 

called sqlite3.exe, or use any text editor, such as notepad.exe, 

to view the content of the database. 

In the source code of SQLite, there is interface reserved 

for encryption, while it does not provide any encryption 

implementations. For embedded systems, depending on the 

operating system and file access control mechanism is the first 

defense of SQLite, while encryption is the more critical 

defense mechanism. 

SQLite does not provide any audit mechanism either. The 

backup and restore of the database file have to rely on manual 

copy of the database file. 

3.  Design the security machanism for SQLite 

3.1 Level of the security in database 

There are three ways to access a SQLite database. 

1) Writing a program which calles the API functions to 

access the database. 

2) Using the tools provided by SQLite such as sqlite.exe 

or other tools to access a SQLite database. 

3) use any other file reading or writing tools, such as 

GEDIT on Linux, Notepad on Windows to edit the database 

file directly. 

According to the structure of database as well as the 

applcations of database, the implementation of security 

mechanism in database can be achieved on two levels. 

1) in the database level, i.e. to increase security control in 

the codes of the Database Management System ( DBMS ). 

2) in the application level, i.e. to add security control in 

applications who use the database. For this kind of methods, 

all of the three access ways of the database must be 

considered, otherwise only partial access methods add security 

control, and other methods can not use the data correctly 

anymore. 

These two implementation levels have their own 

advantages and disadvantages. The former needs to modify the 

database source code, while the latter needs to modify the 

application layer codes. For SQLite, these two schema can 

both be implemented, user can chose any one schema or 

combine them together according to the specific needs. 

3.2 Security mechanism for SQLite 

Security of SQLite can be enhanced in several ways, such 

as access control, data encryption, audit, backup and restore, 

etc. Next this paper will illustrate how these methods work. 

1) access control 

A SQLite database is an ordinary file, so access to it must 

be permitted by the file access control mechanism first. Further 

more, authentication can be added to the DBMS. A user or an 

application must provide correct password when he want to 

access the database. Only after the authenticaion, the database 

can be accessed, e.g. created, queried, modified, inserted, 

deleted, modified, and so on. 

2) data encryption 

There are two data encryption schema can be implemented 

for SQLite. One is to encrypt on the DBMS level, i.e. perform 

encryption or decryption while reading from the database or 

writing to the database. Another scheme belongs to the 

application layer, where encryption or decrypton can be 

operated on some fields of the records, while what the DBMS 

faces are cipher fields encrypted.  

Compared with the second sheme, the first scheme can 

provide stronger encryption, where the encryption function is 

embed into the DBMS, and the encryption and decryption 

process is transparent to users. Nervertheless, this method 

increases the load of the DBMS, and the source code of 

DBMS must be modified. The latter method needs the 

application program to encrypt the data before writing data to 

the database, and decrypt data after reading from the database, 

thus increasing the burden of application programs. 

The SQLite source code reserves encryption interface, 

such as sqlite3_key, sqlite3_rekey, etc. which can provide 

DBMS level encryption. There have been some encryption 

implementations on SQLite[1,2], but these are based on earlier 

versions of SQLite, while SQLite develops very fast. At 

present the latest version of SQLite is sqlite3.6.17. The 

functions and data structures have changed a lot which makes 

up of early defects and make functions more perfect. 

3) audit mechanism 

Audit mechanism of SQLite can be implemented with the 

logging mechanism provided by the operating system. For 

example, on Linux system, the syslog system call can be used 

to log inportant operations. Audit mechanism in DBMS can 

also be implemented in application layer. In DBMS, 

applcation program interfaces funcitons(API) can be provided 

to log important operations. Either of these two methods needs 

to modify the source code of SQLite and enable the 

multithread options at the same time.  

4) backup and recovery mechanism of SQLite 

SQLite uses a single file to store the complete content of 

the database, so the backup and recovery can easily be realize 

just by file copy. 

In this paper, authentication, encryption and audit 

mechanism are all realized by modifying the source code 

SQLite in DBMS level. The authentication and encryption 

mechanism are combine together into the unity of the 

encryption mechanism, i.e. not only the data are encrypted but 

also the database structure is encrypted. Password must be 

provided before any access to the database. If the password is 

not correct, then the structure of the database can not be 

correctly understood, neither does it allow for the follow-up 

access. As for the backup and retore mechanism, API 

functions are defined to backup and to restore a specified 

database.The following paragraph will illustrate how the 

encryption mechanism is implemented in detail.  

 

586



4.  Implementation of encryption in SQLite 

4.1 Interface of encryption in SQLite 

In the SQLite source code, there has been encryption 

interface reserved which defines the prototypes for encryption 

related functions but without any implementation codes. The 

main interface is make up of several functions. In file sqlite3.h, 

there are function prototypes namely sqlite3_key and 

sqlite3_rekey, the former is used to specify the key of a 

database, and the latter is used to reset the key. In file attach.c, 

there are some encryption related functions, for example, 

function sqlite3CodecGetKey is used to get the currrent key of 

a database, function sqlite3CodecAttach is used to relate the 

key to the database. 

To implement the encryption operation, all read and write 

operations must be connected with the encrypt and decrypt 

operations, the funtion sqlite3pager_set_codec is defined for 

this task. The prototype of sqlite3pager_set_codec is defined 

as follows.  

void sqlite3pager_set_codec( Pager *pPager,  

void *(*xCodec)(void*,void*,Pgno,int),  

void *pCodecArg) 

{ 

  pPager->xCodec = xCodec; 

  pPager->pCodecArg = pCodecArg; 

}； 

This funciton associates the coding funtions with each 

page, thus the coding function is executed automatically when 

reading and write a page. 

It can be concluded from above analysis, to implement the 

encryption funtion, some functions must be implemented, e.g. 

sqlite3_key, sqlite3_rekey, sqlite3CodecGetKey, 

sqlite3CodecAttach as well as the coding function. 

4.2 Encryption algorithm 

A SQLite database file is stored where a page is the 

minimum unit, page size can be customized. When encrypt a 

database, the encryption algorithm should fit for the page size. 

As if well known, encryption algorithms are classified into 

block encryption algorithm and sequence encryption 

algorithm. In block algorithm, plain texts are divided into 

fixed length blocks, a block is encrypted or decrypted together. 

In sequence algorithm, the key is a sequence generated, each 

byte ( or bit ) of the plaintext is encrypted with the the 

corresponding byte in the sequence. If a block encryption 

algorithm is used, and if the plaintext is not of integer times of 

the block size, then the plaintext must to be filled with random 

data. So the ciphertext may be larger than the original 

plaintext, and the original page may not be large enough to 

store the encrypted data, and thus may need to adjust the 

stored page. In this paper, we choose the sequence encryption 

algorithm RC4, which avoids the page adjustment problem of 

block algorithms. 

4.3  Key generation 

Since the password input by users is not of fixed length, 

and from the security point of view, if password input is used 

directly as the encryption key, then the key may be revealed 

from the database. Therefore in this paper, a MD5 operation is 

exectuted on the input password, and the abstraction computed 

is used as the source of the RC4 key. 

4.4 implementation 

Basing on the source codes of SQLite3.6.17, We 

implements the function of authenticaion, data encryption, 

simple loging mechanism, backup and restore functions with 

standard C language. The architecture of the encryption source 

can be shown in Fig. 1, where the arrow indicates the 

relaitonship among some important funcitons. 

4.5 Testing the encryption function 

New database system must be tested to see if SQLite 

modified as above works in proper way. The test items include 

1) the original application programs can run correctly on the 

new database system. 2) the encryption function of the new 

database is correct. 3)logging mechanism,backup and restore 

function is correct. Since encryption is the main functions 

added to the database, next will describe the testing process of 

the encryption funciton. 

First write an application program which accesses a 

SQLite database. The program is very simple and easy to get 

its meaning. It Open a database named test2.db, create a table 

named user, and insert two records to the table. The source 

code of this program is as follows. 

main(){ 

 sqlite3 *db; 

 char *zErrMsg=0; 

 sqlite3_open("test2.db",&db); 

 if(db==NULL) 

  return -1; 

 sqlite3_exec(db,"create table user (name varchar(64)  

UNIQUE, age text);",0,0,&zErrMsg); 

 sqlite3_exec(db,"insert into user values('Li Nana ',  

'20');",0,0,&zErrMsg); 

 sqlite3_exec(db,"insert into user values('Wang Haihu',  

'10');",0,0,&zErrMsg); 

 sqlite3_free(zErrMsg); 

 sqlite3_close(db); 

} 

Since this program is simple and the program is correct, 

there is no error dealing operations in the program. In real 

applications, statements on checking errors must be inserted 

after each statement accessing the database. 

Fig. 1  Architecture of the encryption source code 

 
Other 

Functions 

Key 

generation 

sqlite3CodecAttach 

sqlite3_key sqlite3_rekey 

Encryption& 

Decryption 

Page coding 

Function 

587



Fig. 2 is the content of file test2.db when opening by 

notepad. It can be seen that the table structure and the data of 

the records all can be read. So when a database is not 

encrypted, one can get the content by access the database file 

directly. 

Then modify the above program, insert one line after the 

statement sqlite3_open("test2.db",&db): 

Sqlite3_key(db, “123456”,6); 

The meaning of this statement is that to encypt the 

database by key “123456”, and the length of the key is 6. 

Fig. 3 is the  content of file test2.db when opening by 

notepad after it is modified. As can be seen that the content is 

mess up, no one can get the content of the database, thus it 

keeps the secret of the data. 

Now write a new application program, which can read the 

data from the database after it is encrypted. The content of this 

program is as follows. 

int SelectTable( void * para, int n_column, char ** 

column_value, char **column_name ); 

void main(){ 

 sqlite3 *db; 

 char *zErrMsg=0; 

 sqlite3_open("test2.db",&db); 

 if(db==NULL) 

  return; 

 sqlite3_key(db,"123456",6); 

 sqlite3_exec( db, "select * from user",  

SelectTable, NULL, &zErrMsg); 

 printf("errmsg is:%s",zErrMsg); 

 sqlite3_free(zErrMsg); 

 sqlite3_close(db); 

} 

int SelectTable( void * para, int n_column,  

char ** column_value, char **column_name ) 

 

 

 

{ 

 printf(" cloname=%s, colvalue=%s,cloname=%s,  

colvalue=%s\n", *column_name, *column_value,  

*(column_name+1), *(column_value+1)  ); 

 printf( "------------------\n" );         

 return 0; 

} 

where statement sqlite3_key(db,"123456",6)  provides the 

key for the encrypted database. Function  SelectTable is a 

callback funciton who takes charge of reading data from the 

database one record after another. 

The result of the program is shown in Fig. 4. So if the 

password is correct, then the program can get the original data 

before encryption. 

If the password is not matched, for example if the 

statement is modified to: 

sqlite3_key(db,"111111", 6); 

then the statement accessing the database will fail, the erro 

message is “file is encrypted or is not a database”, as shown 

in Fig. 5. 

  So the encryption implemented in this paper can provide 

the funcion of data encryption and authentication.  

 

Fig. 4   result of the program  when password is matched 

 

Fig. 5  error messages when password is not matched 

5.  Conclusion 

A database is a centralized structure to store data for 

information systems, where data security is critical. Basing on 

the analysis of the current database security mechanisms, this 

paper design security mechanisms for SQLite, illustrate how to 

modify the source code to enhance its security. The modifed 

SQLite inherits the advantages of the original system, and 

promote its security by authentication, encryption, logging, 

backup and restore mechanisms. 

References 

[1] Zhao Yuehua and Zhu Weiling, “Design and realization of database 

encrypt module based on SQLite”, Computer Engineering and Design, 
Vol.29, No.16, pp.4132-4134, August 2008. 

[2] Liao Shunhe and Le Jiajin, “Analysis and research of the encryption 

method for SQLite”, Computer Applications and Software, Vol. 25, 

No.10, pp.70-72, October 2008. 

[3] Tian Xiuxia, Wang Xiaoling, Gao Ming and Zhou Aoying, “Database as 

a Service⎯Security and Privacy Preserving”, Journal of Software, 

Vol.21, No.5, pp.991-1006, May 2010. 

[4] Jiao Yan, “With Regard to the Status of the Database System Security 

Research”, Computer Security, 2010(5), pp.45-47, May 2010. 

[5] Wen Xubo and Bai Haijuan. “Security tactic of Oracle database”, 

Information Technology, 2009(8), pp.91-93, August 2009. 

Fig. 2 database file before encryption 

Structure 

of the table 

content of 

the records 

Fig. 3 database file after encryption 

588




