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 Abstract - A new method is proposed to quantitatively 

characterize lymphocyte deformation in image sequences. The whole 

framework includes three steps：cell segmentation, cell tracking, and 

cell deformation characterization. Firstly, morphological image 

processing is implemented as a kind of segmentation method to 

detect cell region. Then, method based on Fourier descriptors is 

presented to optimize cell contour, which makes cell contour smooth 

and closer to real contour. Secondly, gradient vector flow (GVF) 

Snake algorithm is carried out for tracking cell region in image 

sequences. Finally, the part of cell deformation characterization is 

accomplished by improved symmetry difference for cell region. Two 

classes of lymphocyte video database provided by the cooperation 

hospital, Beijing You’an hospital, are used to verify the proposed 

approach. Experimental results show that it can quantitatively 

characterize lymphocyte and produce reasonably good agreement 

with subjective judgment by experts. 

 Index Terms - Cell deformation characterization, image 

sequences analysis, cell image analysis, Fourier descriptors, 

quantitative characterization. 

1.  Introduction 

Cell is the most basic structural and functional unit of 

living beings, all organisms are composed of cells. While a 

live-cell contains tremendous valuable information in vivo, 

quantitative characterization of cell deformation, cell motility, 

and cell movement are important to understand the basic 

physiological processes such as wound healing, tissue repair, 

differentiation, metastatic potential, chemotaxis and so on [1-

2]. In addition, deformation and locomotion of lymphocytes 

are two essential features of the immune system; therefore 

measurement of the deformed and locomotor behavior of a 

lymphocyte is part of its functional analysis [3]. As a result, 

cell analysis has become one of the most important branches of 

biomedical field, especially single lymphocyte analysis. 

Microscope image processing, an assisting method of 

clinical information acquisition, has played an important role 

in facilitating the appropriate diagnosis and treatment against 

some serious diseases such as cancer, leukemia etc. During the 

past several years, research on cell image analysis on the basis 

of static image has attracted significant attention, such as cell 

segmentation, cell counting, cell classification and so on [4]. 

On the other side, valuable information obtained from image 

sequences also plays a significant role in aided diagnosis as it 

can provide more information than cell shape and cell number 

in a static image, such as cell deformation, cell motility, and 

cell movement. For this reason, there has been considerable 

interest in cell dynamic behavior analysis in cell image 

sequences [1,3,5-10]. Hendrik et al. studied two methods for 

the measurement of shape changes in microscopic images of 

lymphoid cells [3]. Florence Gemain et al. dealt with the 

spatio-temporal analysis of two-dimensional deformation and 

motion of cell based on an affine model [1]. Xavier Ronot et 

al. proposed an approach for quantification of cell motility 

based on an optical flow method [5]. Cyrus A. Wilson et al. 

presented a noniterative image cross-correlation approach to 

track translation and rotation of crawling cells in time-lapse 

video microscopy sequences [6]. In one word, digital image 

analysis appears to be attractive tool for characterizing cell 

deformation, cell motility, and cell movement. Therefore, this 

paper focuses on the method of quantitative characterization of 

lymphocyte deformation in image sequences. 

In the field of computer vision, cell image analysis is 

considered as a difficult problem for the following reasons. 

First, to make sense of the information-rich image sequences 

by reducing them to simple parameters is not always exact 

enough to catch the biologically relevant phenomena under 

investigation. Second, live-cell is a non-rigid body; it makes 

the classical methods, optimized for rigid transform, 

unsuitable. Usually, a shape is represented by its bounding 

contour, or its interior region. Earlier paper discussed 

quantitative analysis for cellular morphological change based 

on cell contour [7], while it is found that changes of cell region 

gives the most direct impression to people too. For binary 

image after segmentation, cell region in different frames can 

be assumed as sets of points, which contain the coordinates of 

cell region pixel points. Therefore, symmetric difference of 

these sets can be used to analyze cell deformation in image 

sequences. It is proved to be a reliable parameter to 

characterize cell deformation, and experimental results show 

reasonably good agreement with human direct visual 

evaluation. The whole framework for quantitative 

characterization of lymphocyte deformation is divided into 

three steps: cell segmentation, cell tracking, and cell 

deformation characterization. 

 2.  Cell Segmentation 

A. Cell detection 

 In general, image analysis begins with a segmentation 
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process for the purpose of detecting regions of interest. 

Therefore, cell segmentation is the first step of quantitative 

characterization for lymphocyte deformation, which aims to 

detect cell region from image sequences. As indicated above, 

quantitative characterization of lymphocyte deformation 

contains three steps; a flow diagram can be seen from Fig. 

1(a). Besides, major steps of cell segmentation used in this 

paper are illustrated in Fig. 1(b). Firstly, morphological 

grayscale reconstruction, as a simplification step, is used to 

remove noise and other information that contribute little to 

subsequent processes. With this operation, region of cell can 

be extracted fast and effectively. After the procedure of 

grayscale reconstruction (as shown in Fig. 2(b)), the next 

problem is to select an optimal threshold for image 

binarization. As can be seen from the intensity histogram 

(illustrated in Fig. 2(c)), the largest intensity distribution 

corresponds to background, therefore the second largest one is 

selected as optimal threshold, which corresponds to 

lymphocyte. The binarization result is given in Fig. 2(d). 

Finally, algorithms of removing small regions and filling holes 

are implemented to complete the segmentation procedure (as 

shown in Fig. 2(e)). 

B.  Cell contour optimization 

Cell segmentation is first step of cell image analysis as well 

as the most important step, since accurate cell contour plays a 

significant role in subsequent processes. Because coordinates 

of every pixel in digital image are discrete, coordinates of 

boundary obtained by segmentation method are discrete too. 

Though the lymphocyte can be detected exactly; cell contour is 

not accurate enough.  

Fourier descriptor is usually used to describe and recognize 

object, and its basic idea is to describe shape boundary in 

terms of its spatial frequency content [11]. A boundary can be 

represented as the sequence of coordinates ( ) [ ( ), ( )]z n x n y n , 

for ,N-10,1,2n   . Furthermore, each coordinate pair can be 

treated as a complex number, so that 

( ) ( ) ( )z n x n jy n                             (1) 

Although the interpretation of the sequence was recast, the 

nature of the boundary itself was not changed. Besides, it 

reduces a 2-D problem to 1-D. 

The discrete Fourier transform (DFT) of ( )z n  is  
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for ,N-10,1,2k   . These complex coefficients ( )a k are 

called Fourier descriptors of the boundary. The inverse Fourier 

transform of these coefficients can restore ( )z n . That is, 
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for ,N-10,1,2n   . 

 

Input
（Video Data）

Cell 

Segmentation

Cell 

Tracking

Cell Deformation 

Characterization

Output
（Parameter）

(a) (b)

Reading 

Image

Grayscale 

Reconstruction

Image

Binarization

Removing Small 

Regions

Filling 

Holes

Contour  

Optimization

 

Fig. 1 Procedure of cell deformation characterization. (a) Main steps; (b) 

Steps of cell segmentation. 

 
Fig. 2 An example of lymphocyte segmentation. (a) The original image, the 

biggest cell is lymphocyte, while the others are red blood cells; (b) 

result of grayscale reconstruction; (c) intensity histogram of (b); (d) 

result of binarization from (b); (e) result of removing small regions and 

filling holes from (d); (f) the final result of cell detection. 

The Fourier transform of cell contour expands this in a 

Fourier series and obtains a set of coefficients that capture the 

shape information. According to the property of Fourier 

transform, high-frequency components account for fine detail, 

and low-frequency components determine the global shape. 

Therefore, if we use an appropriate number of coefficients to 
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restore ( )z n , a smooth boundary can be got and the 

coordinates of boundary is continuous. In other words, setting 

some of the high-frequency components ( ) 0a k  , and using 

the left coefficients to restore ( )z n . This process is equivalent 

to use a low-pass filter to optimize Fourier descriptors. 

According to numerous experiments, 30% of the total numbers 

of the ( )a k can get a better result for cell images in our 

research. The approximation to ( )z n can be defined as 

follows: 
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for ,N-10,1,2n   , and 0.3P N    . Fig. 3 shows the 

comparison result of detection for lymphocyte before and after 

using Fourier descriptors. As can be seen from the picture, 

Fourier descriptors can get a better result that make cell 

contour smooth and more closer to real contour. 

 

Fig. 3  Result of cell contour before and after using Fourier descriptors. 

3.  Cell Tracking 

When analyzing cell image sequences, cell segmentation is 

followed by cell tracking. In this paper, an improved active 

contour algorithm named gradient vector flow (GVF) Snake 

[12] is implemented for tracking lymphocyte. Active contour 

is an energy-minimizing spline guided by external constraint 

forces and influenced by image forces that pull it toward 

features such as lines and edges [13]. Traditional active 

contour has two major shortages. First, the initial contour 

needs to be close to true boundary; otherwise it may converge 

to a wrong result. Second, active contours have difficulties in 

progressing into boundary of concavities. GVF-Snake 

algorithm improves active contour through introducing a 

modified external force with gradient vector flow. Fig. 4 gives 

the result of cell tracking at different times. 

4.  Characterization of Lymphocyte Deformation 

So far, because of rapid development of science 

technology, many methods with different techniques and 

devices have been used in cell analysis such as microscopy 

technique, patch clamp technique, flow cytometry, 

fluorescence analysis technique and so on [14]. All of these 

methods can retrieve vivo's physiological and pathological 

information based on different kinds of properties of one or 

more cells, whereas microscope has always been considered as 

the powerful tool for observation of cell. In fact, image 

sequences obtained by phase contrast microscope have been 

given sufficient attention for a long time [1-3, 6], since phase 

contrast microscope does not require staining to view the slide 

and makes it possible to study cell alive. 

As indicated above, from the point of view of computer 

vision, cell image sequences analysis is a difficult problem. 

The first reason is that, it is not easy to make sense of 

information-rich image sequences by reducing them to simple 

parameters to capture the biologically relevant phenomena 

under investigation. Usually, object measurement parameters, 

such as area, perimeter, circularity, elongation are used to 

characterize single cell for static image. However, image 

sequences analysis with these parameters often fails to catch 

dynamic information of the object. The second reason is that 

classical methods are unsuitable. As we all know, traditional 

methods are optimized for rigid transform, while lymphocyte 

is a non-rigid body. Therefore, a suitable method with correct 

characterization parameters should be proposed for cell 

deformation characterization. 

    

    

   

Fig. 4  Result of cell tracking at different times (1s, 8s, 25s, 28s, 33s, 38s). 

During the process of cell deformation characterization, the 

serious problem after cell shape detecting is to represent it 

effectively. Shape is multifaceted, in that it involves a range of 

"dimensions". Several researchers have investigated that using 

bounding contour and interior region to represent shape [15]. 

Besides, in lymphocyte image sequences, changes of cell 

region and cell contour give the most direct impression to 

people. Earlier paper discussed quantitative analysis for 

cellular morphological change based on cell contour [7], 

(a) (b) 
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which is a kind of shape representation method. While in this 

paper, another shape representation method, cell region is used 

for cell deformation characterization. 

Cell’s motion always contains rotation, translation and 

deformation. We can ignore rotational motion, since 

lymphocyte scarcely rotate in these cell image sequences 

according to our observation. Besides, by taking the centroid 

of cell region as the origin of coordinates, translation motion 

does not need to be taken into consideration. In other words, it 

makes the centroid of cell region of different frames coincide, 

so translation can be ignored. For the binary image after 

segmentation, cell region in different frames can be assumed 

as sets of points, which contain the coordinates of cell region 

pixel points. Then, symmetric difference of these sets can be 

used to analyze cell deformation in image sequences after the 

above preprocess. 

In mathematics, symmetric difference of two sets is the set 

of elements which are in one of the sets, but not in both. This 

operation is the set-theoretic kin of the exclusive disjunction 

(XOR operation) in Boolean logic [16]. The symmetric 

difference of sets A and B is commonly denoted by A B . It 

is the set of all x such that either x A or x B but not both. 

A B is defined as: 

: ( ) \ ( )A B A B A B                           (5) 

In Fig. 5 a schematic diagram of symmetric difference of 

sets A and B is given. Obviously, we can assume that, set A  

is cell region in previous frame, set B is cell region in the later 

frame. According to the definition of symmetric difference, 

symmetric difference of sets A and B can characterize cell 

deformation after taking the centroid of cell region as the 

origin of coordinates. However, the point need to be 

emphasized is that cell is different in shape and in size. 

Therefore, cell deformation characterization is reasonable to 

normalize as a dimensionless parameter 
SDP : 

SD

A B
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A


                                     (6) 

 

Fig. 5  Schematic diagram of symmetric difference of the sets A and B. 

Furthermore, cell image sequences is an (2+1)-dimensional 

(space and time) data, hence time factor should be considered 

in cell image sequences analysis. Usually, cell deforms a lot 

within a period of time, and return to its original shape at the 

last fewer frames. In that case, it is not proper to calculate 
SDP  

with the beginning and the ending frames for characterizing 

cell deformation. In fact, several frames at cell deforming time 

point should be picked up for image sequences analysis. In this 

paper, we use a fixed time interval 1t s   for picking up 

frames (images for calculating 
SDP ) from image sequences. 

Furthermore, in order to make sense of the information-rich 

image sequences by reducing them to simple parameters, mean 

value of all the 
SDP is characterized as the final result. This 

makes comparison of cell image sequences at different length 

feasible. Assume that, an image sequences has N checked 

frames, cell region in each frame is defined as C . n  is the 

ordinal number, and 1n frame is the image picked up after 

t in same image sequences. Then, cell deformation 

characterization parameter (mean value of 
SDP ) is defined as: 
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Moreover, 
SDP value of two adjacent frames can be 

calculated by binary image of cell region. Fig. 6 shows binary 

image ( , )b i j , which is the result of symmetric difference of 

two adjacent frames picked up at a time interval 1t s  . 

Assume that, the image size is L  by K , SD value of two 

adjacent frames can be calculated as follows: 

1 1
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Fig. 6  Binary image b(l,k) result of symmetric difference of two adjacent 

frames. 

As can be seen from Fig.6, SD region shows the difference 

of cell region between two adjacent frames. In fact, it is the 

area of cell deformation, and 
SDP value is a reliable parameter 

to characterize it. A similar idea is proposed that area of the 

non-overlapping parts divided by the average cell area is used 

as a shape change factor 
[17]

. However, this paper presents it 

from the point of view of set, and improves cell boundary 

based on Fourier descriptors. In addition, we propose the 

normalized value 
SDP  and mean value 

SDMP  for comparison 

of cell image sequences at different length. It is worth 
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emphasizing that choosing a better time interval t  is needed 

to investigate according to image sequences, since deformation 

of cell occurs at random time. In this paper, based on 

numerous experiments, time interval t  is fixed at 1s. While 

frames should be picked up at the time which cell begins 

deformation or cell finishes deformation, an unfixed time 

interval can make the cell deformation characterization 

parameter more accurate.  

5.  Experiments 

To verify the efficiency of the proposed method, we 

conducted the experiment with 42 lymphocyte videos clips 

(image sequences) taken from our cooperation hospital---

Beijing You'an Hospital. Materials ： Clean healthy Balb/c 

male mice as host; clean healthy C57BL/6 male mice as donor, 

6-8 weeks old, 20-22 g. Lymphocyte in peripheral blood, 7 

days after the skin transplantation were observed. All 

observations were made using inverted optic phase contrast 

microscopy with magnification 16x1 000. These video clips 

are divided into two classes by experts according to the degree 

of cell deformation. Cell deformation of the first class is 

drastic, while the second is slight. 

Fig. 7 illustrates the experimental results. It is observed 

that, the two class data are classified according to the 
SDMP  

value. Values of drastic data are higher than the slight one. 

Furthermore, values of slight class are relatively stable, and 

values of drastic class are not, just as the experts observed. It 

is proved to be reliable parameter of cell deformation, and the 

experimental results show reasonably good agreement with 

human direct visual evaluation about the degree of cell 

deformation. 

 
Fig. 7  Result of MSD for the two sets of data. 

6.  Conclusions 

In this paper, we focus on quantitative characterization of 

lymphocyte deformation based on digital image processing. 

Morphological image processing is used to segment cell 

region, and Fourier descriptors based method is presented to 

optimize cell contour. And then cell tracking is carried out by 

GVF-Snake algorithm in image sequences. Cell deformation 

characterization is conducted with symmetry difference of cell 

region. Experimental results show that the proposed method 

can produce reasonably good agreement with direct visual 

evaluation by experts. Furthermore, this task has profound 

significance for further study of dynamic information of cell in 

image sequences. And it can facilitate the appropriate 

diagnosis and treatment against some serious diseases, because 

dynamic cell image can reflect the activity level of the 

captured cell, as well as the corresponding organism. 
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