
An Optimized Scheme for High-speed Data Interaction

Based on TI-C6678 Multi-core DSP

Baoyu Su, Zhiyong Xu and Renjie Niu

Institute of Optics and Electronics Chinese Academy of Sciences, Sichuan Province, China

{baoyu su}baoyusu@126.com

 Abstract - The performance of data interaction between

different memories has become a significant factor in the

complex embedded systems with the huge increase of

processing needs, especially between internal chip-on memory

and external memory. This paper advances a constructive

optimized scheme named global direct memory access

(GDMA) for high-speed data interaction in the multi-core

digital signal processor (DSP) systems. Furmore, we give

important recommendations to actualize software

programming optimization of GDMA from three aspects.This

scheme is based on the key technique of enhanced direct

memory access versions3 (EDMA3), quick direct memory

access (QDMA) and internal direct memory access (IDMA).

This scheme can enhance the peak speed of data interaction

between local memories by 53.8% and 2.5% averagely for

some situations using QDMA compared EDMA3. By

establishing the bridge memory area, the speed from level-1

data memory to external memory is optimized by 15.3%

maximumly. The multi-core DSP system can achieve the

performance of high-speed data interaction at around 5GBps

to meet user expectations.
 Index Terms – Data interaction, GDMA, High-speed, Multi-core

DSP, Bridge memory.

1. Introduction

 The signal processing currently has the characteristics of
massive processing data and strict real-time requirement,
which is heavy laden for the embedded systems. Hence, the
evolution to multi/many-core architectures while being
enabled by technology advancers, is also a solution to achieve
more performance at less energy costs [1]. For example, the
digital signal processor (DSP) system of this paper has
received the level of 8 cores on a single chip, and the 32-core
DSP is also predictable in the near future. Realizing high-
speed data interaction is much more difficult because the
multi-core system has more complex memory hierarchy and a
great many shared resources for all cores [2]. Since the
differences of working frequency lead to different speeds, we
must find an effective scheme to balance these gaps. In
conclusion, realizing high-speed data interaction is essential to
enhance entire performance of the multi-core DSP system and
other complex embedded systems.

Direct memory access (DMA) technology is a usual
practice to ensure data interaction in embedded systems. The
primary function of DMA is to move data without central
processing unit (CPU) intervention because it has individual
bus architecture and CPU is designed to execute algorithms

operation rather than simple and repetitious data movement for
a long time. Up to now, DMA has been developed several
types. The embedded engineers usually use single-type DMA
to actualize data transfer by investigating the practical
applications in some laboratories. Although this method can
meet currently requirement, they are solicitous to find a more
effective mechanism. Furthermore, single-type DMA does not
perfectly match with all scenes of data interaction and reduces
the efficiency of our software coding.

The TMS320C6678 is a high-performance 8-core DSP
whose cores and peripherals are interconnected using a bus
called TeraNet (a dedicated switching network) [1]. In the
following we will refer to this chip as simply TI-C6678. These
cores are capable of running at 1.0 GHz (gigahertz), up to 1.25
GHz [3] [4]. For the EVM6678LE based on TI-C6678, the
memory architecture consists of a two-level internal memory,
external memory, and external extended memory, shown in Fig.
1. Each core has 32-kbyte level-1 program (L1P) memory, 32-
kbyte level-1 data (L1D) memory, and 512-kbyte local level-2
(L2) memory [5]. In addition, the TI-C6678 has 4-Mbyte
multi-core shared memory (MSM) and supports an external
extended memory addressing space of up to 8GBytes for
massive data storage [6].

Fig. 1 Memory architecture of TI-C6678 System.

The remainder of this paper is outlined as follows: section
2 details the key technology related with our scheme. Section 3
presents the design and implementation. This is followed by
test results and analysis in section 4. This paper closes with
conclusions and future work in section 5.

2. The Key Technology

Our optimized scheme is based on three-type DMA.
EDMA3 is discussed in section 2-A, QDMA discussed in
section 2-B, and IDMA which is discussed in section 2-C.

C66x
TM

CorePac

32KB L1D 32KB L1P

512KB L2

64-bit DDR3

SDRAM

MSMC

4MB

MSM

SRAM

Memory Subsystem

8 Cores ＠ up to 1.25GHz

TeraNet

Two-level internal

memory

External memory

HyperLink

International Conference on Computer, Networks and Communication Engineering (ICCNCE 2013)

© 2013. The authors - Published by Atlantis Press 666

A. EDMA3

 Enhanced direct memory access version3 (EDMA3) is

widely used to move data in the embedded systems. There are

144 general channels in the TI-C6678 and they all can be

triggered by manual synchronization, event synchronization

and chain synchronization. EDMA3 controller consists of

EDMA3 transfer controller (EDMA3TC) and EDMA3

channel controller (EDMA3CC) [7]. EDMA3TC processes the

tasks of data transfer and EDMA3CC is the most important

part of user programming. EDMA3 support fully orthogonal 3-

dimensional (3-D) transfer with independent indexes on source

and destination address [8]. EDMA3 channels are configured

in a parameter table. The table is a 2KBytes block of

parameter RAM (PaRAM) located at the EDMA3CC. The

PaRAM table consists of six-word parameter entries of 24

bytes each [7]. Each parameter entry of an EDMA3 event is

organized into six 32-bit words, shown in Table I. EMDA3

controller can provide the ability to chain several EDMA

transfer requests from one event that is driven by a peripheral

or external device.

TABLE I Type Size for Papers

31

0

Channel Option Parameter(OPT)
Channel Source Address(SRC)

Array/frame count
(FRMCNT)

Element count
(ELECNT)

Channel Destination Address(DST)

Array/frame index
(FRMIDX)

Element index
(ELEIDX)

Element count reload
(ELERLD)

Link address
(LINK)

B. QDMA

 QDMA is used to transfer a segment of data controlled by

software code. QDMA’s configuration and start is relatively

simple and quick. QDMA only needs 1 to 5 CPU cycles to

submit a transfer request [9]. QDMA is triggered by manual-

programming registers but not event. QDMA can start and

begin quickly to move data once this WORD is written after

setting a specific WORD as the trigger word. The parameters

of QDMA channel remain unchanged after completing data

movement once, which is convenient to the next programming

because we only need to change small part of registers. So,

using QDMA can upgrade coding efficiency. QDMA always

uses frame synchronization or block synchronization, which

means that QDMA always requests a whole data frame (1-D)

or data block (2-D) transmission.

C. IDMA
 The IDMA technology is used to perform high-speed

block transmission between any two of two-level internal
memory. The IDMA controller allows rapid data paging
between all local memories to cores. But IDMA does not
moving data to internal mapped memory registers (MMRs).
Typically, IDMA is used to transfer between slower level-2
memory and faster level-1 memory [10]. Compared the cache,
the latency of IDMA is lower when the data interaction takes

place in the background, concurrently with CPU operations.
To fully support this function, IDMA consists of two
orthogonal channels capable of working concurrently. The two
channels are:

 1) IDMA Channel 0: Intended for quick programming of

configuration registers through external peripheral

configuration port (CFG) of DSP. It is noticed that IDMA

Channel 0 only can accesses external configuration registers

but internal configuration registers.

 2) IDMA Channel 1: Intended for data and program

paging between local memory, i.e., for data transfer. In

addition, IDMA Channel 1 also fills specific data to some

blocks of local memory. It is controlled by four configuration

registers. We pay attention to test the data interaction speed in

this paper, so we focus on the IDMA Channel 1.

3. Design and Implementation

 This section is designing the test scenarion of data
interaction to get the compelling experimental results for our
analysis and supporting our optimized scheme. The Part A is
about overview of programming and Part B introduces the test
scenario.

A. Overview of Programming
 We choose EVM6678LE as the hardware platform for

verifying and comparing the data transfer speed in many
situations. The integrated development environment (IDE) is
Code Composer Studio version 5.3 (CCSv5.3) compatibly
with TI-C6678. The application programming interfaces (APIs)
are based on CSL (Chip Support Library) module which
makes programming easier. In order to accurately record the
time of data interaction, we can get the number of CPU cycles
between two breakpoints by enabling and viewing clock
function of CCSv5.3 or using the clock register. Then the data
interaction speed is equal to the ratio of data size and cycle
number. This paper focuses on 4 kinds of SRAM (Static
Random Access Memory), respectively L1D, L2, MSM and
DDR3, because the frequency of data exchange between them
is higher. It is taken notice that the L1D and L2 must be
configured as SRAM not cache and their size can be set up
according to the factual applications. Their start address is
respectively 0x00F00000, 0x00800000, 0x0C000000 and
0x80000000.

B. Test Scenario of Data Interaction
 We choose four of eight cores as the test group to verify

data movement speed based on the three DMA modes. The
test scenario of data interaction is shown in the Fig. 3. Core n
(n is 0 up to 3) denotes the DSP core to run the program that
realizes data movement by multi-mode. IDMA test is
implemented between L1D and L2 on the internal memory.
We have completed a test of the two-way data transfer
between different memories for each mode.

For the realization of EDMA3, the detailed parameters of
EDMA3 channel are ACNT, BCNT, CCNT, SRC, DST, etc.
They together determine the amount and mode of data that to
be transferred. ACNT is the size in bytes of an array, BCNT is
the number of the array in a frame, and CCNT is the number of
the frame in a data block [11]. Because QDMA is very similar

667

with EDMA3 except for ignoring the RLD register which
consists of ELERLD domain and LINK domain, we only need
to focus on the setting of trigger WORD for to realize QDMA.
For the realization of IDMA, we need to notice that the start
address and the destination address should be included in the
internal memory area. The size of data segment should be
suitable for the space of SRAM.

Fig. 2 Test scenario of data interaction.

4. Test Results and Analysis

 We download the corresponding program to the core-
group and ensure them to be carried out successfully on the
EVM6678LE. Then, we get the test results described in
section 4-A. Section 4-B presents our analysis.

A. Test Results
 We get the speed of data transmission between memories

using different modes, as shown in the Table II.

TABLE II Speed of Data Interaction

 DST

SRC

L1D

SRAM

L2

SRAM

MSM

SRAM

DDR3

SDRAM

DMA

Mode

L1D

SRAM

3.225 4.049 4.408 4.410

EDMA3

3.319 4.167 4.557 4.534

QDMA

3.763 7.227 ※ ※

IDMA

L2

SRAM

4.047 4.699 4.915 5.140

EDMA3

4.182 4.844 5.072 5.253

QDMA

7.220 3.268 ※ ※

IDMA

MSM

SRAM

4.405 4.927 4.915 5.213

EDMA3

4.551 5.073 5.087 5.262

QDMA

※ ※ ※ ※

IDMA

DDR3

SDRAM

4.225 5.140 5.198 3.396

EDMA3

4.377 5.251 5.264 3.485

QDMA

※ ※ ※ ※

IDMA

The unit of speed is gigabit bytes per second (GBps) and

the symbol, that is “※”, indicates unsupported IDMA mode.

Red font indicates the peak-bandwidth for EDMA3 mode,
green font for QDMA mode, and blue font for IDMA mode.

B. Analysis
 Based on the results, IDMA mode has a great advantage to

move data between local memories especially two different
memories, and the peak-bandwidth of IDMA mode for internal
memory is increased by 53.8% and 50.9% compared with that
of EDMA3 and QDMA mode. Consequently, the data
interaction of this domain should be improved. But the
disadvantage of IDMA mode is that using region is smaller
than EDMA3 and QDMA mode. For the external memory, the
average speed of QDMA mode is increased by 2.5% compared
with EDMA3 mode, thereby gaining excellent performance for
some data transmission situations by optimizing the selection
of DMA mode. But QDMA do not support data reload and
linking, which causes that it is not suitable for repeating data
movement. The peak data bandwidth of EDMA3 mode is
5.213GBps between MSM and DDR3 when the frequency of
DDR3 is running at 1333MHz and the width of data is 32 bits
for our application. So, the result is very close to the
theoretical speed, which is 5.332GBps. For a 1080*960 image,
its size is 3.1MB and the transmission time is only 0.59 ns
(nanosecond). Generally, there are 30 frames to process per
second in the field of image processing, so the total time is
30*0.59 ns, i.e. 17.7 ns. Therefore, EDMA3 mode can satisfy
the practical application at the present time. In addition, we
take the situation transferring data between L1D and external
memory into account. The peak-bandwidth is 4.557GBps but
the peak-bandwidth between L2 and external memory is
5.253GBps, up 15.3% than the former. Hence, this situation
should be optimized.

5. Conclusions and Future Work

 We advance a cutting-edge optimized scheme for the
multi-core DSP system, named global direct memory access
(GDMA), aiming at achieving the best performance of data
interaction to satisfy the user expectations. GDMA is
demonstrated in Section 5-A, and Section 5-B presents
software programming optimization of GDMA. Section 5-C
unrolls the future work.

A. An Optimized Scheme: GDMA
 The architecture of GDMA is shown in the Fig. 3. The

entire bandwidth of GDMA can attain around 5GBps, which is
very valuable and close to the theoretical bandwidth of
TeraNet bus. GDMA divides memory into 3 areas, called
internal memory, external memory, and bridge memory.
Besides that, we label the most suitable DMA mode for these
areas in the Fig. 3.

 1) Internal Memory Area: For data transmission between

local on-chip memories, we take use of IDMA mode. The peak

transmission bandwidth of IDMA is increased respectively by

54.8% and 50% compared with that of EDMA3 and QDMA in

this area. What is more, the realization code of IDMA is

simpler and submitting task request is quicker than other

modes.

 2) External Memory Area: This area consists of DDR3

SDRAM and MSM SRAM. The characteristic of data

interaction between them is massive and repeatability, so this

case is more compatible to EDMA3 mode. EDMA3 can

provide enough capability matching with the processing

DDR3

SDRAM

MSMC

4MB

MSM

L1P L1D

L2 SRAM

Core 0

L1P L1D

L2 SRAM

Core 1

L1D L1P

L2 SRAM

Core 2

L1D L1P

L2 SRAM

Core 3

Internal

memory

Internal

memory

Memory Subsystem

External memory

Internal

memory

Internal

memory

668

requirement based on our analysis. It is most important that

EDMA3 support linking, chaining and data reload, being

convenient for the continuous tasks.

 3) Bridge Memory Area: The reason of naming bridge

memory is that this area plays a role of a bridge between L1D

and external memory. When data interaction is required,

GDMA uses bridge memory as the intermediate transfer-

bridge to attain performance improvement by around 15%

compared with direct access between L1D and external

memory. This area belongs actually to the on-chip memory,

which is the reason of not including DDR3 SDRAM. Though

the speed between L2 and DDR3 is a little better than that

between L2 and MSM, but they are further possibly leading to

much latency. This area should make use of mixed mode

consisting of QDMA and EDMA3 to select for different

application environments.

Fig. 3 Architecture of GDMA.

B. Software Programming Optimization of GDMA
 GDMA give us an optimized scheme for high-speed data

interaction, but it also brings some discomforts. Firstly, each
DMA mode needs independent coding and many different API
functions. Secondly, this scheme requires the support of many
modules, which results in larger program to occupy shared
memory space after compilation. Thirdly, these
inconveniences not only affect the progress of programming,
but also affect the optimization of the entire system. Therefore,
we have to do further optimization about software
programming. This work is very necessary and also very
meaningful for ultra-high-speed data transmission in the future.
In this subsection, we give personal recommendations to
actualize software optimization from three aspects.

 1) GDMA Registers: The primary task is to complete the
definition of GDMA registers, because we must firstly
understand the definition and set rules of relevant registers for
the development of any program. In this subsection, we select
the DMA type select register (we will refer to this as simply
DMASEL) as an example to illustrate our thoughts about
GDMA registers. Because we can use three types of DMA, we
define two bits for to select the corresponding DMA type. For
example, 00b represents using the IDMA mode, 01b

represents using QDMA mode, and 10b represents using
EDMA3 mode. The remaining bits can be defined as other
purposes. Of course, the other method is that the GDMA
registers also can be mapped to the registers of EDMA3,
QDMA and IDMA to call for the corresponding DMA type.

 2) GDMA APIs: APIs are some pre-defined functions and
its purpose is to provide application developers the ability to
access a set of routines based on a software or hardware, but
you do not access to source code, or to understand the internal
working mechanism of the details. The architecture of GDMA
APIs must contain full functionality of three types of DMA,
but we should optimize the similar functions, especially those
between EDMA3 and QDMA. The number of GDMA APIs
should be much smaller than the sum of EDMA3, QDMA and
IDMA APIs.

 3) GDMA Module: The modularity of GDMA can be

better to handle complex systems by combining with other

modules. The GDMA module should be able to clearly

indicate its function, logic, state, and communication interfaces

with other modules. The function, state, and communication

interfaces can reflect external characteristic of GDMA module,

and the logic reflects internal characteristic of GDMA module.

C. Future Work
 GDMA is a very meaningful and challenging task for

ultra-high-speed data interaction in the future. For the detailed
implementation process, we should do further study and regard
it as the main focus of our future work.

References

[1] Bernhard H.C. Sputh, Andrew Lukin and Eric Verhulst, “Transparent
Programming of Many/multi Cores with OpenComRTOS: Comparing
Inter 48-core SCC and TI 8-core TMS320C6678,” in The 6th MARC
Symposium, pp. 52–58, July 2012.

[2] L. Karam, I. AlKamal, A. Gatherer, G. Frantz, D. Anderson, and B.
Evans, “Treads in Multicore DSP Platforms,” Signal Processing
Magazine, IEEE, vol. 26, no. 6, pp. 38–49, 2009.

[3] TMS320C6678 Multicore Fixed and Floating–Point Digital Signal
Processor, Literature Number: SPRS691C, February 2012.

[4] Murtaza Ali, Eric Stotzer, Francisco D. Igual, Robert A.van de Geijn,
“Level-3 BLAS on the TI C6678 multi-core DSP,” IEEE Computer
Society, IEEE, DOI 10.1109/SBAC-PAD.2012.26, pp. 179–186, 2012.

[5] TMS320C66x DSP Cache User Guide, Literature Number: SPRUGY8,
November 2010.

[6] Chengfei Gu, Xiangyang Li, Wenge Chang, Gaowei Jia and Haishan
Tian, “Matrix Transposition Based on TMS320C6678”, in GSMM,
pages 29-32, May 2012.

[7] Guolong Zhang and Xiaosu Xu, “High-speed and Real-time
Communication Controller for Embedded Integrated Navigation
System,” in IHMSC, pp. 331–334, August 2009.

[8] Enhanced Direct Memory Access Controller User Guide, Literature
Number: SPRUGS5A, December 2011.

[9] Fengqin Yu, “TMS320 C6000 structure principle and hardware design,”
Beijing: Beihang University Press, 2008, pp. 90–92.

[10] Jieming Ma, “Software-based Ultrasound Phase Rotation Beamforming
on Multi-core DSP,” University of Washington, 2012 pp. 6–9.

[11] Shanshan Xue, Jian Wang, Yubai Li, and Qiqiong Peng, “Parallel FFT
Implementation Based on Multi-core DSPs”, ICCP Proceeding, pp.
426–430, April 2011.

8 Cores

DDR3

SDRAM

MSMC

4MB

MSM
L2 SRAM

L1D SRAM

Core

QDMA

EDMA3

IDMA

EDMA3

GDMA External Memory

Internal Memory

Bridge Memory

669

