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Abstract - In this paper, a novel time-frequency Root-MUSIC 

method for near-field source localization is proposed. In the method, 

two spatial time-frequency matrices of Pseudo Wigner-Ville 

distribution (PWVD) are constructed, and a time-frequency Root-

MUSIC algorithm is developed to estimate bearings and ranges of 

near-field targets. It has high accuracy and resolution for the bearing 

and range estimation of non-stationary signals, even when the signal-

to-noise ratio (SNR) is low, or the sources are closely spaced. The 

effectivity of the method is validated by simulations. 

Index Terms - near-field source localization; time-frequecy 

distribution; parameter estimation; Root-MUSIC. 

1. Introduction 

Spatial source parameter estimation has been an 

important research field of array signal processing over the 

decades. It is widely used in radar, sonar, communications and 

medical imaging. Most of the array processing methods 

assume that the sources are in the far-field and the arrays are in 

the same plane. However, when the sources are in the near-

field, the assumption of plane wave no longer holds. 

The research on near-field source localization is originated in 

the late 70s, early 80s of last century. The estimation methods 

mainly include triangle methods and time delay estimation 

methods. Delay estimation methods include beamforming 

method
[1]

, maximum entropy method, maximum likelihood 

method, Capon method
[2]

, linear prediction class method, 

MUSIC method, eigenvector method, path following 

method
[3]

, ESPRIT method, higher order cumulant method
[4]

, 

circular correlation method
[5]

, far-field estimation methods, 

and so on. 

Time-frequency analysis has been considered by scholars 

as a very effective technology for non-stationary signals 

(e.g.linear frequency modulation (LFM)) processing in the last 

decade
[6-8]

. G. M. Amin, Yimin. Zhang and others have done a 

lot of research on time-frequency analysis for blind source 

separation and DOA estimation
[9-11]

, but very few for the near-

field application 
[12-14]

.  

In this paper, we propose a near-field time-frequency 

Root-MUSIC method, aiming to improve the performance of 

estimation of bearing and range of non-stationary signal  in the 

near-field. Two spatial time-frequency matrices of Pseudo 

Wigner-Ville distribution (PWVD) are constructed, and a 

time-frequency Root-MUSIC algorithm is developed to 

estimate bearings and ranges of near-field targets. The method 

is validated by simulation. 

2. Wigner-Ville distribution of the signals 

A linear frequency modulation (LFM) signal is shown in 

Eq.(1) 
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where 
0f  and k  are starting frequency and FM rate of ( )s t . 

The Wigner-Ville distribution (WVD) of ( )s t  is  
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Therefore, in the time-frequency domain, the WVD of a 

LFM signal is a straight line changed by the FM rate. The 

WVD spectrum of a LFM signal is given by Fig.1. 

 
(a) contour plot 

 
                                         (b) 3-D plot  

Fig.1  The WVD spectrum of a LFM signal 
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3. Array Model 

The following assumptions are assumed to hold: 

1) The source signals are LFM signals, and are 

independent with each other. The positioning parameters of 

different sources are different, and the received signals are the 

superposition of a series of spherical wave. 

2) The noise received by each array element is stationary 

additive white Gaussian noise, its mean is zero and variance is 
2 . The noises between different array elements are 

independent, so are with the signal sources. 

3) The spacing of array elements d is not greater than the 

1/4 of the wavelength  , that is, 4/d , and the number of 

signal sources P is less than half the number of array elements 

M, that is, 2/MP  . 
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Fig. 2. The model of near-field source localization 

As shown in Fig.2, we consider a sensor array consisting 

of 2L M sensors, the spacing of sensors is d. The sensors 

receive P narrowband and irrelevant signal sources. We 

choose the sensor with number 0 as a phase reference point. 

The bearing and range of p-th signal source is ( , )p pr . In the 

presence of additive noise, the signal received by the l-th 

sensor can be expressed as 
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for MlM  1 , where, )(tsp
 is the p-th signal source, 

pb  is the amplitude of the p-th signal. )(tnl
 is an additive 

white Gaussian noise. 2ll pppl    is the propagation 

delay of the  p-th signal source between the l-th array element 

and the reference array element.  
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where  is the wavelength. 
p  is the nonlinear function of 

p ,  

and
p  is the nonlinear function of both 

p and 
pr . 

4. Near-Field Time-Frequency Root-Music Method 

A time-frequency distribution matrix by Pseudo Wigner-
Ville distributions (PWVD) with a rectangular window of 
length is given by [11]. Based on it, we express the time-

frequency distribution of ( )lx t as  
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Then we construct two matrices 
1D and

2D using spatial 

time-frequency distribution matrices, where the 1 2( , )l l -th 

elements of the two matrices respectively are  
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where 
1 1, , ,l M    

2 1, ,l M  . Thus, the two matrixes 

1D and 2D  
can be further written as 

2

1 ( ) [ ( , )] ( )H

sE t f   D A D A I                         (9) 

2

2 ( ) [ ( , )] ( )H
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 1
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Perform the eigenvalue decomposition of 
1D and 

2D , 

1 1 1 1 1 1[ ] [ ]H

S N S ND E E Λ E E                     (18) 

2 2 2 2 2 2[ ] [ ]H

S N S ND E E Λ E E                     (19) 

where, 
1Λ and 

2Λ are the eigenvalues of the matrices 

1D and
2D , respectively. 1SE  

and 2SE  are signal subspaces 

consisting of the largest P eigenvalues of 
1D and

2D , and 
1NE
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and
2NE are noise subspaces consisting by the minimum M-P 

eigenvalues, respectively. 
1 2, M P

S S

E E C , ( )

1 2, M M P

N N

 E E C . 

      Eq.(19) can be rewritten as 
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From Eq.(10), 
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From Eq.(20), 
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From Eqs.(21) and (22), 
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Since [ ( , )]sE t fD ,   and   are all full rank matrices, Eq.(23) 

becomes into 
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It can be seen that the noise subspace and signal steering 

vector are orthogonal. 
Refer to a near-field Root-MUSIC method proposed in 

[15], let 2 2,j je e    , and
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where, the coefficients 
'

K and 
'

K are the sum of the elements 

along the diagonals of   and  , respectively. Using Eq.(26) 

and Eq.(27) to extract their roots, we can achieve 
1 2, ,...., P     

and 1 2, , , P      
(P roots on the unit 

circle).The information of azimuth is included in  and  . 

Also,   includes the information of azimuth and range. To 

obtain the correct bearing and range estimation, the parameter 
pairing is needed, which is investigated in [16]. Then, we 
obtain the bearing and range by  

1sin ( ( ) / (4 ))p p pangle d                  (28) 

2 22 cos / ( ( ))p p pr d angle                (29) 

for 1, ,p P  . 

5. Simulation Results 

We assume a uniform linear array of 10 sensors with the 
spacing of array element is 1/4 of wavelength, the number of 
snapshots N = 256, the window length h =129. The starting 
and ending frequencies of signal 1 are 0.1 and 0.5, and the two 
frequencies of signal 2 are 0 and 0.4, respectively. The two 

LFM signals are 
22 (0.1 0.2 / )

1( ) j t t Ns t e   and 
20.4 /

2( ) j t Ns t e  .  

The PWVD of the two signals are demonstrated in Fig.3.  
Experiment 1: Suppose the two signals are positioned at 

1 120 , 0.2o r    and 
2 240 , 0.4o r   , respectively. 100 

Monte Carlo simulations are performed. Fig.4. shows the 
RMSE of bearing estimation of signal 1 and signal 2, 
respectively, using the proposed method and the method in 
[15]. SNR ranges from 0 dB to 20dB. Fig.5. shows the RMSE 
of range estimation. 

From the figures, we conclude that when the signals are 
LFM signals, the method proposed in this paper has higher 
estimation accuracy than the method in [15]. 
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(a) SNR=10dB                               (b) SNR=0dB 

Fig. 3. PWVD of two LFM signals 
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(a) source 1                                     (b) source 2 

Fig. 4. RMSE of bearing 
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(a) source 1                                     (b) source 2 

Fig.5. RMSE of range 

Experiment 2: In the example, we compare the bearing 
resolution of the proposed method and the method in [15]. 
Assume the bearing spacing between the two signals varies 

from 0o  to 10o with 2o  difference, i.e., 
1 20o  , while 

2  is  

20 ,22 ,24 ,26 ,28o o o o o  and 30o , respectively. SNR=20dB. We 

observe the performance of the RMSE of bearing and range 
estimation versus the bearing spacing between the two signals. 
The results are shown in Figs. 6 and 7, respectively. 

It is shown that when the bearings are closely spaced, the 
proposed method has higher estimation resolution. 
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(a) source 1                                     (b) source 2    

Fig. 6. RMSE of bearing versus bearing spacing between the two signals 
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(a) source 1                                     (b) source 2 

Fig.7. RMSE of range versus bearing spacing between the two signals 

Experiment 3: In the example, we similarly compare the 
range resolution of the proposed method and the method in 
[15]. Assume the range spacing between the two signals varies 
from 0  to 1.0 with 0.2 difference, i.e., 

1 0.2r  , 

while
2r is 0.2 ,0.4 ,0.6 ,0.8 ,1.0 ,1.2      , respectively. 

SNR=20dB. We observe the RMSE of bearing and range 
estimation versus the range spacing between the two signals. 
The results are shown in Figs. 8 and 9, respectively. 

It reveals that the proposed method has higher resolution in 
both bearing and range estimation when the two signals have 
close ranges. 
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(a) source 1                                     (b) source 2   

Fig. 8. RMSE of bearing versus range spacing between the two signals              
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(a) source 1                                     (b) source 2   

Fig. 9. RMSE of range versus range spacing between the two signals                 

6. Conclusion 

In this paper, a novel time-frequency Root-MUSIC 
method for near-field source localization is proposed. The 
simulations show that, for the bearing and range estimation of 
near-field non-stationary signals, the time-frequency based 
method has higher estimation accuracy and resolution than the 
conventional second order statistics based Root-MUSIC 
method, especially when the SNR is low, or the bearings or 
ranges of the sources are closely spaced.  
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