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Abstract 

In this paper, an operational drought risk management framework based on the stream-flow intelligent internet 
control is proposed. In the proposed framework drought can be predicted, evaluated and mitigated by using a 
dynamic stream-flow control under the sensors detection. The framework mainly includes four sequential steps: (i) 
the stream-flow prediction, (ii) the stream-flow deficit index (SDI) analysis, (iii) the drought multiple regions 
response, and (iv) the stream-flow balance control. In order to instantiate a specific framework management, 
intelligence methods are utilized in these processes, namely the generalized regression neural network (GRNN) 
algorithm for the stream-flow prediction and the collaborative particle swarm optimization (CPSO) for the 
reservoirs water collaborative operation. Finally, a specific case study corresponding to the Fu basin in China is 
investigated to test the operability and reliability of the proposed drought risk management. 

Keywords: Drought risk assessment; Generalized regression neural network; Dynamic stream-flow prediction; 
Data-driven methods; Collaborative particle swarm optimization 
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1. Introduction 

Water scarcity has frequently occurred in recent years in 
the world. Numerous studies show that the condition is 
being further aggravated by the rising water demands of 
municipalities and industries, the growing population, 
and the gradual climate changes 1, 2. As a result, drought 
hydrology has been receiving much attention not only in 
research, but also in public lives 3. Drought is a long 
period of meteorological anomaly characterized by 
extreme lack of precipitation, which causes significant 
damages in both natural environment and human life 4, 5. 
Consequently, it is imperative to construct an entity 
drought management system to explore the inherent 
laws and manage the risk holistically like a business in 
order to mitigate the impacts of drought on water 
resource systems. 

Stream-flow observations collected from near-natural 
catchments are of paramount importance for water 
detection and water attribution studies. Any 
organizational regulation actions for the stream-flow has 
a direct impact on the lives of the residents, the 
industrial production, the agricultural irrigation as well 
as the adaptation and policy options 6. The drought 
management is fully integrated into the stream-flow 
development efforts, and the manner to control the 
stream-flow at different lead times often is a first step 7. 
Such a processing with a stream-flow drought 
management is often referred to as a drought risk 
management, which can ensure the development 
process for risks of short-term climate variability and 
long-term water flow changes 6, 8. In recent years, much 
effort has been made in the drought prediction, 
preparedness, adaptation and mitigation, such as the 
stream-flow drought time series forecasting 5, 9, 10, the 
real-time drought forecasting in multi-reservoir 
operations 11, simulating time series of climate variables 
for drought management 12, etc. All of the above works 
have detected an aspect of the drought risk by certain 
spatial variability. The drought risk management has 
been dispersed at several separable portions sets. 
However, risk management, as is known as a 
consecutive procedure which includes risk monitoring, 
risk identification, risk evaluation and sequential 
decision-making. Each of the sessions depends on the 
previous stage and has a mutual interaction with the 
other parts. If they are separated into pieces for 
investigation, it becomes difficult to understand, apply, 

evaluate and trust risk management capabilities 12, 13. 
Therefore, there is a need for a comprehensive drought 
risk management system.  

In the integrated internal control-risk management 
(IICRM) framework that is borrowed from business risk 
management issued by COSO in 2004 14, 15, “Internal 
Control” is involved in and is an inseparable part of the 
risk management system. The risk management is no 
longer only concerned with the prediction of the risk 
occurrence in each segment, but is also concerned with 
the analysis of the risk with certain related portions that 
are all properly integrated. With the advent of internet, 
more objects are becoming embedded within wireless 
sensors and are gaining the ability to communicate in 
the Internet 16. To implement a quantitative drought risk 
management system, one should consider how to use 
either discrete or continuous measurement systems to 
understand the operational risk across each of the 
drought risk prediction, evaluation, decision and 
regulatory processes and steps.  

In this paper, an automated and fully data driven 
drought risk and integrity management system 
embedded in the Internet is proposed which is derived 
from IICRM. In the proposed framework, the drought 
variable parameters including the rainfall, the stream-
flow, and the reservoir can be automatically detected 
and recorded by a variety of sensors, and then a data-
driven empirical modeling technique 17, 18 is used to 
evaluate the stream-flow as a drought risk degree. 
Finally, a dynamic collaborative model attempts to 
control all the reservoirs to discharge or bump and 
achieve a dynamic stream-flow balance in different 
regions. Through a specific case application in the Fuhe 
basin in China, it is confirmed that the risk management 
mode of the drought can improve water control 
processes and reduce the drought prediction costs 
effectively.  

The main contributions of this paper are as follows: 
 (i) An operational framework for the drought risk 
management is proposed which is based on the data-
driven intelligent Internet control;  
(ii) In the proposed framework, the drought can be 
measured, evaluated and mitigated by using a dynamic 
stream-flow adjusting in a life cycle of risk management 
with intelligent system models, which includes the 
generalized regression neural network (GRNN), drought 
stream-flow deficit index (SDI) risk identification 
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algorithm and the collaborative particle swarm 
optimization (CPSO);  
(iii) A case scenario is used to clarify and verify the 
framework applicability and operability in the stream-
flow drought risk management.  

The paper is organized as follows. The operational 
drought risk management framework which is based on 
data-driven intelligent Internet control is presented in 
Section 2. The basic intelligent research methodology is 
reviewed in Section 3. The details of the drought risk 
management system based on the dynamic stream-flow 
management and analysis are illustrated in Section 4. A 
case study scenario in the Fuhe basin in China is 
examined through the proposed framework in Section 5. 
Finally, concluding remarks and further works are 
provided in Section 6. 

2. A Data-Driven Operational Drought Risk 
Management Framework 

A dynamic drought risk management system is 
presented according to a simple chronological order in 
Fig. 1 Part 1, which is referred to as an operational 
drought risk management of the Internet control 
(ODRMIC). The operational drought risk management 
framework based on the data-driven intelligent Internet 
control consists of seven interrelated steps that are 
shown in Fig. 1 Part 1. 

 

Fig. 1. The operational drought risk management 
framework based on the data-driven intelligent Internet control  
It should be emphasized that the framework is based on 
the assumed conditions in the study that the regional 

stakeholders have established the corresponding 
proportion of the watershed for coordinating water 
under the water shortage scenarios. They will provide 
the support to the coordination group member 
organizations in assuming their agreed upon roles and 
responsibilities under the drought situation. The drought 
risk management system is derived from the manner the 
management runs an enterprise and is integrated with 
the management process 19. These components are as 
follows:  
(i) Setting observable objectives – Before drought risk 
management systems, the studied region would require 
a careful analysis, and then the observable objectives 
(known also as control sections) are set, that include the 
steam-flow monitor points, the reservoirs dam monitor 
points, and the rainfall hydrometric station monitor 
points etc. These monitoring points will be used to 
collect the data to identify the potential drought events. 
(ii) Sensors information and communication – The 
sensors information are identified, captured, and 
communicated in a time slice form under different 
sensors from the monitoring points. Effective 
communication also occurs in a broader sense, flowing 
down, across, and up to the backend information 
platform through the network communications. 
(iii) Drought event identification – Based on the sensors 
information, certain methods are used to forecast the 
future stream-flow, and the predicting results will be 
channelled back to a drought management’s strategy or 
the drought plan-setting processes. 
(iv) Drought risk assessment – Risks are analyzed 
through a drought risk index calculation. The index 
values will impact and then determine the drought 
warning range of the regions. Drought events may be 
classified according to the index deficit severity. 
(v) Drought risk response – Management system can 
select responses – avoiding, accepting, mitigating, or 
sharing risk according to the value of the drought 
severity assessment as performed in step (iv). For a 
short-term drought, if the drought can be mitigated 
through controlling the gate opening of the reservoir 
dam – then activate the remote reservoirs collaborative 
control process, or else develop a set of actions to align 
risks with the region government’s risk tolerances as 
well as the risk response measures.  
(vi) Drought control activities – To modify the drought 
risk, start remote collaborative control of the reservoirs 
and then drain the water in the control. However, the 
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uncontrolled long-term drought, policies and procedures 
need be established and implemented to help ensure the 
risk responses for an effective execution.  
(vii) Drought management monitoring – When the 
system performs the reservoirs dispatching water 
scheduling schemes, the sensors can monitor in real-
time all the monitoring points of the water variance until 
each monitoring point satisfies the minimum required 
water, so that the reservoirs drainage action will then 
stop. 

Drought risk management is an iterative and 
sequential process in which almost any component can 
and does influence another one, but it is not strictly 
performing each process. In the following section, we 
will instantiate a specific case to explain the drought 
event identification, the drought risk assessment, the 
drought risk response and the drought control activities 
using an intelligent operational method, which 
corresponds to the Fig. 1 part 2.  

3. Drought Risk Management Based on Dynamic 
Stream-Flow Management and Analysis 

The stream-flow is the volume of water that moves 
on a designated point over a fixed period of time 20. The 
flow of a stream is directly related to the amount of 
water moving off the watershed into the stream channel. 
It is affected by the weather conditions, whereas it is 
increasing during the rainstorms and decreasing during 
the dry periods. On the other hand, it changes with the 
seasons of the year; decreases during the summer 
months and reaches the lowest flow for most streams 
and rivers in most of the country in the months of 
August and September 10 . In the following sections, the 
time series stream-flow analysis is represented as the 
drought behavior and is researched under different 
periods. There are a number of other factors for drought 
detection, such as the nature of the soil moisture deficit 
and the groundwater deficit or the precipitation deficit, 
etc. The deficits indices are only a part of the droughts 
measure in any specific application. They are included 
in this framework as a specific illustrative case study. 
Due to space limitations, the readers can refer to the 
multi-index drought prediction for more details. 

Fig. 1 Part 2 shows a specific stream-flow case to 
explain the drought risk management process. The blue 
box sections in Fig. 1 Part 3 are the refinements of the 
entire process, and they will be elaborated in detail in 
the following sections. Fig. 2 shows the refinement 

details of the steam-flow implementation analysis for 
the drought risk management by using data-driven 
intelligence methods. In Fig. 2, each counterpart of 
Fig.1 Part 2 has been marked. All of these processes in 
Fig. 2 are performed in sequence as follows. 
(i) Monitor the real-time stream-flow, the rainfall and 
the reservoir water level in each control section. 
(ii) The GRNN model is established to forecast the 
short-term and the long-term stream-flow based on the 
historical and real-time sensor data, respectively. The 
detail model construction is illustrated in Section 3.1. 
(iii) A stream-flow deficit index (SDI) is calculated as a 
drought evaluation standard for measuring the degree 
and level of the water resource shortage. Through the 
SDI, drought-warning level in different regions is 
obtained and it will yield a drought warning level, 
corresponding to a drought response degree. The details 
on the calculations are illustrated in Section 3.2. 
(iv) The reservoirs control system will decide whether 
to perform the water dispatching or not as well as which 
reservoirs need to be discharged with the drought degree 
levels established in step (iii).  
(v) When the drought degree reaches or exceeds the 
early drought warning grade and level, a real-time water 
regulation is initiated to perform by the CPSO in 
parallel. CPSO will deploy the water in each reservoir 
and decide which one need to drain and how long the 
reservoirs drainage last, the details on the process of the 
overall water allocation is illustrated in Section 3.3.  
(vi) The stream-flow remote sensing device can detect 
water variation in every control section and renews 
these real-time data into the backend information 
platform. 
(vii) When the real-time stream-flow of the control 
sections in the information platform satisfies the 
minimum water usage, then the reservoirs discharging 
stops. 
(viii) Output the final water dispatch scheduling 
schemes to the water managers as well as the impacted 
water departments.  
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Fig. 2. A detailed process of the data-driven steam-flow 
control for drought control. 

 
In the following, we are going to describe in detail 

the key steps that are described under items (ii), (iii), 
(v). 

3.1. Data-driven stream-flow prediction model  

The stream-flow is relevant to hydrological and 
meteorological problems and tasks. By integrating the 
long-term historical data with the real-time collected 
data in every hydrological station a time series analysis 
can be performed in order to detect the drought risk in 
future several days or a month. Many data-driven 
models  21, including linear autoregressive (AR) 22, non-
parametric or nonlinear chaos-based neural networks 
(NN) 23, have made great progress in hydrologic time 
series prediction in the past decades. GRNN algorithm 
is a typical chaos-based forecast method for dynamic 
time series data 24. It uses a non-parametric probability 
density estimation to approximate the underlying 
regression surface of the training data available. For this 
reason it is also called the probabilistic neural networks.  

Given a dataset T having n examples, 
T= 1 1 2 2{( , ), ( , ),..., ( , )n nx y x y x y , ,i n ix R y R∈ ∈ , 
i=1,2,…,n}, where ix  is an input variable and iy  is the 
desired target. Let us define the Euclidean distance Di, 
which is used as a measure of how well the training 
sample ix  can represent the point position of prediction 

input x . The estimate ˆ( )y x  can be visualized as a 
weighted average of all of the observed value iy , where 
each observed value is weighted exponentially 
according to its Euclidean distance from x  24, that is:  

 

2 2

1

2 2

1

exp( || || /2 )
ˆ( )

exp( || || /2 )

n

i i
i

n

i
i

y D
y x

D

δ

δ

=

=

−
=

−

∑

∑
                 (1) 

where ||Di||2=(x-xi)T(x-xi), andδ  is the square deviation, 
also known  as the smoothing parameter.  

GRNN functions through the four-layers, namely: 
input layer, hidden layer, summation layer and output 
layer. The input layer only passes the input vector to the 
RBF hidden layer; in the hidden layer, the calculation 
performed in each pattern neuron is 

2 2exp( || || /2 )iD δ− , with a normal distribution centers 
at each training sample. In the summation layer, the 
signals of the i-th pattern neuron, applied to the 
denominator neuron are weighted with the 
corresponding values of the training samples yi. The 
weights on the signals applied to the numerator neuron 
are one. In the output layer, the output is simply a 
weighted average of the target values of the training 
cases close to the given input case as given by the 
expression in Eq.(1). 

3.2.  Drought risk identification and evaluation  

Drought is generally considered as periods with 
insignificant water resources for sustaining activities of 
a region. There are a variety of indices to definite the 
drought degrees, generally the most adopted degree of 
drought is what the American Meteorological Society 
has proposed in 2004 25, namely the degree of the water 
deficit. In the present study, the stream-flow deficit 
index (SDI) is used as an index to evaluate the drought 
degree. SDI is statistically similar to most other 
commonly used Standard Precipitation Index (SPI) 26 , 
which is based on the basic method used to derive 
drought events from continuous or discrete records of 
precipitation. The SDI is calculated by scaling the 
cumulative stream-flow values by using the median, the 
maximum, and the below minimum cumulative values 
as expressed in Eqn. (2)-(3). It overcomes the problem 
of fitting a statistical distribution to the cumulative 
stream-flow data 30, specifically, 

If ,i j jSW MSW≤ ,  ,
, 100

min .
i j j

i j
j j

SW MSW
SDI

MSW SW
−

= − ×
−

 (2)  
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If ,i j jSW MSW> , ,
, 100

max.
i j j

i j
j j

SW MSW
SDI

SW MSW
−

= ×
−

   (3) 

where i denotes the years, j  denotes the day of the year 
(1 to 365), ,i jSDI  denotes the stream-flow deficit index 
(%), ,i jSW  denotes the cumulative stream-flow for the 
period of interest (mm), jMSW  denotes the long-term 
median cumulative stream-flow for the period of 
interest (mm), max. jSW  denotes the long-term 
maximum cumulative stream-flow for period of interest 
(mm), and min . jSW  is the long-term minimum 
cumulative stream-flow for period of interest (mm). 
These equations are used for scaling in order to create 
an index which has a lower bound of -100 and an upper 
bound of +100. 

3.3.  Optimal allocation of water by reserves 
dispatching 

The stream-flow can be divided into the two parts, 
the main-streaming and the tributary. The water 
shortage in the tributary part can pass its information to 
the main-streaming level by level so that ultimately the 
information will be fed back to its control reservoir. The 
reservoirs in different study areas cooperate and 
coordinate their activities to maintain a water balance 
and the stream-flow obtains the overall water allocation. 
The behavior of the reservoir is known as a 
collaborative optimal scheduling of the multi-level 
water. 

The particle swarm optimization (PSO) algorithm, 
which is derived from the cooperative behavior of 
decentralized, self-organized systems 27, is an 
evolutionary computational technique 31. It has been 
widely applied to multivariate function optimization 
problems. Here, the collaborative PSO (CPSO) 
algorithm is used to determine in parallel the 
collaborative optimal water discharging in different 
reservoirs in multi-regions. Due to space limitations the 
reader can refer to the literature 28 and 29 for detailed 
processes and usage of this algorithm. 

We assume that the reservoir outflows are 
represented as particles and the solution hyperspace 
dimensionality D of each reservoir is associated with the 
dispatch period t. Given that for scheduling the time is 
12 months a year, with month as a dispatching unit, then 
D is set to 12 and for day as a dispatching unit, then D is 
set to 365. The particle iQ  at the i-th iteration is defined 
according to 

1 2 1 2 1 2
1 1 1 2 2 2( , , , , , , , , , , , , )D D D

i i i i i i i ik ik ikQ q q q q q q q q q= L L L L  (4) 

where t
ijq  represents the j-th reservoir discharge at the t-

th time corresponding to the i-th iteration, and k  
denotes the number of reservoirs. The particle velocity 
vector iV  defines the velocity change rate of the 
reservoir discharge corresponding to the i-th iteration, 
and the velocity of each particle represents the transition 
rate of every reservoir outflow according to 

1 2 1 2 1 2
1 1 1 2 2 2( , , , , , , , , , , , , )D D D

i i i i i i i ik ik ikV v v v v v v v v v= L L L L (5) 
In practice, the velocity rate of the reservoir 

discharge is directly proportional to the reservoir 
storage water capacity. Hence, in the reservoir 
discharged process, the reservoir storage water always 
becomes smaller and smaller than the previous time. 
This will cause the reservoir flow rate to have different 
variation ranges in different times. In this case, the 
reservoir outflow capability has a variable scope. The 
minimum and maximum outflow velocities can be 
calculated according to the following equations, 
respectively, corresponding to the t-th period, 

 
t t

min min max(1 )t
i i iv q qα α= + −                   (6) 

t t
max min max(1 )t

i i iv q qβ β= + −                  (7) 
where t

maxiq  denotes the maximum reservoir outflow 
capability of the i-th reservoir, t

miniq  denotes the 
minimal reservoir outflow in t-th period, 

(1 ()) / 2randα = + , (1 ()) / 2randβ = − , 1 j N≤ ≤ , 
1 t D≤ ≤ , and ()rand  is a random variable. The 
collaborative optimal water discharge in different 
reservoirs in multi regions is given as follows, which is 
shown in the right part of Fig.2.: 
Step 1: Initialize n particles in the population 

{ }1 2, ,..., ,...,i nU P P P P= , set the parameters in the PSO, 
namely the particle population size, the solution 
hyperspace dimensionality, and the maximum number 
of iterations; 
Step 2: Calculate the values of the fitness function 
which can be defined as the minimum shortage of the 
water storage in each control section:  

min [ ( ) ( )]s s
s

fitness D t R t= −∑                  (8) 

where ( )sR t , ( )sD t  denote the s-th control section’s 
water supply capacity (the recommended reservoir 
outflow) and water demand capacity, respectively. The 
goal is to have the particles move towards a small 
fitness direction. 
Step 3: Select the particle position with the lowest 
fitness value that is observed in all particles in a certain 
generation as the best overall position ( gbest ) gdP  and 
the smallest fitness value in each generation as the best 
current generation position ( pbest ) bdP ; 
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Step 4: Check the termination condition. If the 
maximum number of iterations has been reached or the 
required minimal fitness error accuracy has been 
obtained,then the best individual is obtained in the 
current population, output the ( gbest ) gdP and terminate 
the process; otherwise, go  to the next step; 
Step 5: Perform the particle velocity mutation using Eq. 
(9) :  

1
1 1 2 2( ) ( )iter iter iter iter iter iter iter iter

i i ibest i best iV wV c r p Q c r g Q+ = + − + −  (9) 

where iter  denotes the iteration time; 1 i n≤ ≤ ; 1c  and 

2c  are the acceleration coefficients, that are commonly 
set to 2; 1

iterr  and 2
iterr  denote two random variables in 

the range [0, 1]; and 1w
iter

=  denotes an inertia weight 

whose values decline linearly over iter . 
Step 6: Set the velocity in its maximum or minimum 
value range if it exceeds the velocity limitation given 
Eqn. (6) and (7). 
Step 7: Update particle’s position vectors by using Eq.  
(10), then return to Step 2. 

1 1iter iter iter
i i iQ Q V+ += +                        (10) 

4. A Case Study 

4.1.  Study area 

The Fuhe basin that is located in the Jiangxi province 
of China has an area of 15,811km2 and is covered with 
significant agricultural fields. The Fu river is its main 
water supply source which originates from the South 
Guangchang city and ends in the North Poyang Lake, 
covering a total length of 312 km, with a yearly average 
flow of 483 m3/s. The basin has much rainfall every 
year. However, it suffers from the subtropical high 
pressure every year, and the spatial and the temporal 
distribution of water resources are extremely uneven. 
The yearly mean of precipitation is 838mm from April 
to June, accounting for 48% of the annual precipitation. 
However, during the agricultural peak months of July to 
September, it only has 329mm of precipitation, which 
accounts for only 17.5% of the annual precipitation. 
During the period 2003-2009, thousands of people had 
to face with the drinking water shortages in that period. 
In order to have an appropriate arrangement usage of 
the water, a drought risk forecast and water resource 
management are drawn up in advance so that 
governments have a good measurement plan to confront 
with the upcoming water usage contradictions.  

Data of the rainfall and the stream-flow from 1970 to 
2008 are collected from 9 hydrometric stations (these 
are also caller control sections) and the data of the water 
level and tumble flow are collected in two big 
reservoirs. Fig. 3 shows the network schematic diagram 
of the Fuhe basin. The control sections, the large 
reservoirs and the main water usage regions are marked 
in the diagram. At the same time, the control sections as 
detection points will collect real-time runoff (steam- 
flow) and precipitation data from the sensors, which lie 
in the key points of the river. The yearly statistical 
properties of the steam-flow of each control sections are 
shown in Table 1. It can be seen that there exist uneven 
water distributions in different regions in different 
seasons.  

4.2.  Results and discussion 

When the data of the stream-flow sensors is entered 
into the information database, the GRNN will predict 
the stream-flow variation and determines whether the 
control section has a lack of water or not according to 
its SDI degree. If one of the control sections detects a 
water shortage, it will send the information to the  
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Fig. 3. The schematic distribution of the control 
sections, the large reservoirs and the main water usage 
regions in the Fuhe basin. 
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Table 1.  Statistical properties of control sections for the annual average  runoff  and rainfall series in 
the Fu Basin (1970-2008) 

 
 Control 

sections 

Annual average stream-flow series Annual average rainfall series 

NO Min 
(m3/s) 

Max 
(m3/s) 

Mean 
(m3/s) 

Standard 
deviation 

Min 
(mm) 

Max 
(mm) 

Mean 
(mm) 

Standard 
deviation 

1 Shaziling 5.3748 496.1733 103.1576 78.1151 3.4822 4.3126 6.20 2.0645 
2 Nancheng 2.0258 423.66 33.8196 22.9884 3.6561 4.5747 7.1258 2.0709 
3 Miaofang 2.3676 260.9882 39.8958 28.0788 3.1025 4.0379 4.2709 1.9535 
4 Miaojiawan 1.4154 127.8235 23.5434 14.6113 3.6024 4.6659 7.720 2.0581 
5 Lijiadu 0 44.2049 2.9765 1.5482 3.4132 4.3996 4.7741 1.8387 
6 Lichuan 0 325.17 64.0218 35.6321 4.0577 5.0091 7.27 2.4096 
7 Hongmen 0.3451 100.3733 7.3417 4.6551 3.7376 4.6337 6.8133 1.5903 
8 Loujiacun 0.5251 207.1633 16.9233 9.3239 3.4835 4.7675 7.7036 2.06 
9 Mawei 0.1004 560 31.9848 19.1619 3.8131 4.9411 7.6 2.4484 
Average 0 560 28.9251 49.5302 3.6437 3.7852 9.36 1.9865 

 
Table 2.  The water dispatch proportion for each control section 

 
Station No.1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 
Proportion 4.78% 0.60% 10.44% 16.64% 5.33% 14.79% 16.00% 12.11% 8.66% 

 
Table 3.  The reservoir storage outflow for the water dispatching in different months in 2008  (unit: m3/s) 

 
Reservoir Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. 

R1 12.57 18.69 21.63 35.02 97.42 355.80 479.07 189.78 210.74 92.56 126.15 14.028 
R2 51.00 68.24 87.93 91.21 141.46 459.10 437.65 284.85 136.53 77.72 68.73 42.40 

 
Table 4.  The cooperative results of the water dispatch proportion for the entire control sections 

 
Control 
sections Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. 

No.1 4.4% 4.3% 4.3% 4.8% 4.6% 4.5% 4.6% 4.6% 4.7% 4.4% 4.5% 4.2% 
No.2 0.5% 0.5% 0.5% 0.6% 0.6% 0.6% 0.5% 0.5% 0.6% 0.5% 0.5% 0.6% 
No.3 10.2% 9.9% 10.1% 10.4% 10.4% 10.5% 9.4% 10.1% 10.3% 10.1% 10.2% 9.6% 
No.4 14.6% 15.1% 16.3% 15.4% 16.6% 16.7% 16.4% 16.2% 15.9% 16.3% 16.4% 15.5% 
No.5 4.8% 4.8% 5.0% 5.0% 5.3% 5.1% 5.3% 4.9% 4.8% 5.0% 4.7% 4.2% 
No.6 13.7% 14.3% 14.5% 12.5% 14.8% 14.5% 14.5% 14.6% 14.5% 14.3% 14.6% 14.0% 
No.7 14.1% 15.4% 15.4% 13.5% 16.0% 16.1% 15.7% 15.3% 15.9% 15.9% 15.8% 15.8% 
No.8 10.1% 11.4% 9.7% 9.5% 12.1% 12.1% 11.7% 12.1% 11.7% 11.9% 12.1% 10.5% 
No.9 8.2% 8.4% 8.5% 7.6% 8.7% 8.5% 8.5% 7.8% 8.0% 8.3% 8.3% 7.4% 
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reservoir controlling system. After the discharging 
instruction is accepted and agreed upon, a dispatch 
water plan is initiated using the CPSO algorithm by 
adjusting the outflow of each reservoir. It will optimize 
the water volume for every stream segment to avoid a 
water shortage.  

In the following, we simulate a cooperative result of 
the water dispatch proportion in a month. The primary 
parameters of the CPSO algorithm are set as 
follows: 12D = (month), 50m = , max 1000iter = , 

max 0.9w = , min 0.4w = , 1 2 2c c= = , where D represents 
the solution hyperspace’s dimensions; m denotes the 
particle size of population; maxiter  denotes the 
maximum iterations; maxw  and minw  denote respectively 
the maximum and the minimum inertia weight; and c1 
and c2 denote learning factors. The maximum and the 
minimum particle velocities can be calculated according 
to Eq. (6) and Eq. (7), respectively. 

Table 2 shows the corresponding proportion of the 
watershed for coordinating the water during its shortage 
which is established by the study regional stakeholders. 
Table 3 shows the computational results of the reservoir 
storage outflow operation for the drought mitigation by 
using the CPSO algorithm for the next anticipated 
month. It can be seen that the reservoir storage outflow 
from the months of June to September are larger than 
the other months. 

Table 4 shows the simulations for the water dispatch 
proportion of each control section after dispatching 
water for the next anticipated month. Comparing Table 
2 with Table 4, the overall results in Table 4 are almost 
close to those in Table 2. Furthermore, the dispatching 
results have reached the water balance in different 
regions and have met the different region water demand, 
especially in the agricultural water requirement peaks 
from the months of June to September. 

5. Conclusions and Further Work 

With the advent of telecommunication revolution, it 
is a huge challenge for decision-makers to reconsider 
the drought risk management in the Internet 
environment. In this paper, we have proposed an 
operational drought risk management framework based 
on data-driven and intelligent Internet-based control 
solutions. The framework that is outlined addresses the 
drought identifying risk, the drought early warning 
system, the drought dynamic response and the drought 
mitigation solutions by means of management concepts. 
It transforms the new idea of applying an automated, 

consistent, data-driven methodology to ensure that the 
drought risk management is effective and autonomous. 
By utilizing the proposed management system, the 
drought mitigation becomes simple and operational by 
handling the captured dynamic data. In addition, water 
administrators will have better information on not just 
deciding on the current dry state, but also easily 
forecasting the anticipated drought in future times with 
confidence.  

For the drought risk management framework, a 
specific stream-flow management and analysis is 
developed and presented in detail for each part of the 
drought risk management process. Through the use of 
the generalized regression neural network (GRNN) the 
stream-flow forecast for the drought event identification 
is achieved; by using the stream-flow deficit index 
(SDI) analysis in different monitoring points, the 
drought risk assessment is obtained, and finally, the 
remote collaborative control of reservoirs using the 
collaborative particle swarm optimization (CPSO) 
algorithm is implemented. The case scenarios 
corresponding to the Fuhe basin in China illustrates that 
the drought risk management is feasible and operational, 
and has a potential benefit for many thousands of 
households and livestock in the Fuhe basin.  

The framework for the drought risk management is 
easy to operate, and the alternative implemented models 
are feasible in managing both short-term as well as 
long-term drought processes in another territory even 
when the available input datasets is different. 
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