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Abstract: In expensive constrained optimization problems, the 
evaluation of candidate solutions could be extremely 
computationally and/or financially expensive. This paper 
proposes a method, called DyHF-GP, for reducing 
computation costs and raising optimization efficiency, by 
combining Gaussian stochastic process model(GP) with 
DyHF(Dynamic Hybrid Framework). In DyHF-GP, the Latin 
Hypercube Sampling(LHS) is used to sample points, then the 
true function is surrogated by GP. In evolutionary processes, 
the sample points and the GP are updated by retention and 
replacement mechanism. The using of GP and true function is 
controlled by error among several neighbor generations. The 
13 standard test functions show that DyHF-GP has higher 
accuracy and retrieval efficiency. The number of FES is 
reduced by about 60% on average within 10-4 error, which 
diminishing the computation costs of the objective functions 
greatly. 

Key words:  Gaussian stochastic process model; Expensive 
constrained optimization;Surrogate model; Fitness evaluation; 
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I. INTRODUCTION 

Evolutionary algorithms, because of there implicit 
parallelism, strong robustness and other characteristics, are 
widely used to solve single/multiple objective optimization 
problems. However, in the course of evolution, EAs need a 
great number of fitness evaluations and comparison for 
candidate solutions of objective functions in order to achieve 
acceptable solutions. But for complex optimization problems, 
one objective function evaluation would need to consume a 
large amount of time or computation costs(Expensive 
Problems). Therefore, using EAs based on the original 
functions to search for solutions may be costly. 

For expensive problems, researchers have emerged in a 
lot of outstanding methods. Strategies or approaches to deal 
with expensive fitness functions can be distinguished into 
three main types[1]: Problem Approximation, Functional 
Approximation and Evolutionary Approximation. Their main 
motivation is to reduce the number of evaluations directly to 
the original objective function. For example, Response 
Surface Method (RSM) [2], which belongs to Functional 
Approximation, comprises three main components: 
regression surface fitting, design of experiments and 
optimizations using the approximated responses. Fitness 

Inheritance is a technique of which the mechanism works as 
follows: when assigning the fitness to an individual, some 
times we evaluate the objective function as usual, but the rest 
of the time, we assign fitness as an average of the fitness of 
the parents. In Problem Approximation, to save the cost of 
the experiments, numerical simulations instead of physical 
experiments are used to pseudo-evaluate the performance of 
a design. 

In many science and engineering disciplines, it is not 
uncommon to face constrained optimization problems(COPs). 
Traditional methods to solve this kind of problems are 
usually local searching methods based on gradient, such as 
Gradient projection method, penalty functions, Lagrangian, 
quadratic programming method and so on. But these 
methods depend on the initial points and the function forms 
excessively. They are powerless for problems whose feasible 
region are not connected, who are non differentiable or don’t 
have explicit mathematical expressions. Compared with 
traditional methods, EAs don’t need too much prior 
knowledge of the problems, which are more conducive to 
deal with COPs. Camponogara and Talukdar transform the 
COP into a 2-objuctive optimization problem using Pareto 
strategy. Its feature is calculating the improvement direction 
from the Pareto assemblage. The CW[6], proposed by Cai 
and Wang, is robust and efficient when handling 
linear/nonlinear equality/inequality constraints. Ray and 
Liew[7] proposed a society and civilization model. In this 
model, a society contains a cluster of individuals in the 
search space, and a civilization is a set of such societies. 
During the evolution, intrasociety information exchange and 
intrasociety information exchange are used. These COEAs 
have certain effects for general COPs, but they don’t involve 
expensive COPs. 

Although EAs have been widely used in expensive 
optimization problems and non-expensive COPs, domestic 
researchs and applications in the field of expensive COPs, 
which are widespread in engineering practices, have not been 
reported. With motivation of solving expensive COPs, an 
algorithm, named DyHF-GP, is proposed based on GP model, 
which is used as an approximate model to predict the 
objective functions. DyHF-GP uses DyHF as the search 
mechanism and can reduce the FES. The performance of 
DyHF-GP is tested on 13 benchmark test functions from 
CEC2006. The experimental results show that the method 
has certain feasibility and validity. 
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II. PROBLEM DESCRIPTION AND SURROGATE MODEL 

A. Constrained Optimization Problem 

Without loss of generality, the constrained optimization 
problems(COPs) can be formulated as follows: 
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where Sx ⊆Ω∈ , Ω  is the feasible region, and S(decision 
space) is an n-dimensional rectangle space in nℜ  defined by 
the parametric constraints  niUxL iii ≤≤≤≤ 1  , . 

In general, the degree of constraint violation of a vector 
x


 on the jth constraint is defined as 

 






≤≤+−

≤≤
=

mjlxh

ljxg
xG

j

j

j
1},)(,0max{

1       )},(,0max{
)(

δ


  (2) 

where δ   is a positive tolerance value for equality constraints. 
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  reflects the degree of constraint 

violation of the vector x


, and represents the distance of the 

individual  x


  from the boundaries of the feasible set. 

B. Surrogate Model 

Surrogates or meta-models[1] is a method of functional 
approximation. A new expression is constructed for the 
objective function based on previous data obtained from the 
real objective functions. RSM, Gaussian stochastic 
process(GP), Radial Basis Functions, Neural Networks, 
Support Vector Machines and Artificial Immune Systems are 
usually used surrogates. 

In these methods, the GP[8] has special characteristics. 
The most important characteristic is that it can provide an 
error limit for each prediction. The capacity to overcome 
excessive fitting, a limited number of meaningful and 
adjustable parameters, and real time data addition without 
needing to optimize the model parameters, are the reasons 
why to choose GP. 

GP model can be described as follows: 
(1) Assumptions: To build a cheap surrogate model for 

an expensive function ( ) , ny g x x R =   ∈  , Gaussian stochastic 
process modeling makes the following assumptions[9]: 

  a) For any x  , the prior distribution of ( )g x  is Gaussian 

with constant mean μ  and constant variance 
2σ  . 

  b) For any , ' nx x R∈ , ( , ')c x x , the correlation between 
( )xε   and  ( ')xε  , depends only on 'x x−  , more precisely 
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  (2) Hyperparameter Estimation: Giver K points 
1,..., K nx x R∈  and their g-function values 1,..., Ky y ,the 

hyperparameters 1 1, , ,..., , ,...,n np pμ σ θ θ  can be estimated 

by maximizing the likelihood 
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where C  is a K K×  matrix, 
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and 1 is a K-dimensional column vector of ones. 
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Substituting (5) and (6) into (4) eliminates the unknown 
parameters μ and σ from (4). As a result, the likelihood 

function depends only on  iθ  and ip .. An optimization 

method(like DE) can then be used for maximizing (4) to 

obtain estimates iθ̂  and ip̂ . Then estimates μ̂  and 2σ̂ can 

be readily obtained from (5) and (6). 
(3)The Best Linear Unbiased Prediction and Predictive 

Distribution[10]: Given hyperparameter estimates iθ̂ 、 ip̂ 、

μ̂  and 2σ̂ , one can predict ( )g x   at any untested point x   
based on the g-function values iy at ix . The best linear 
unbiased predictor of ( )g x  is 

 )ˆ(ˆ)(ˆ 1 μμ 1−+= − yCrxy T  (7) 

and its mean squared error is 
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where 1( ( , ),..., ( , ))K Tr c x x c x x = .  2( ( ), ( ))N y x s x can be regarded 
as a predictive distribution for ( )g x  . 

III. GP MODEL FOR SOLVING EXPENSIVE COP 

A. Constrained Surrogate Model 

The main characteristic of using multiobjective 
constraint-handling technique to treat constraints is 
redefining COPs as MOPs. Generally, all constraints are 
treated as one objective. The original problem is redefined in 
such a manner that two objectives are considered: the first is 
to optimize the original objective function, and the second is 
to minimize the degree of constraint violation. In COPs, 
number of constraints are usually large, which may easily 
lead to the solutions outside ht feasible region(especially in 
the boundary of the feasible region), when using GP model 
to predict all objective function and constraints, because of 
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the error of GP. Therefore, in order to guarantee the 
effectiveness of the algorithm, DyHF-GP uses GP only for 
the objective function and uses the original expression for the 
constraint conditions. 

B. Combining GP model with DyHF 

DyHF[11] using global search model and local search 
model for solving COPs dynamically according to the 
feasibility proportion of the current population. The method 
of combining DyHF with GP model, which may reduce the 
FES, is using GP instead of the original function to predict a 
part of the fitness of individuals during the evolution. 
Framework schematic diagram of the combination of DyHF 
and GP is shown in Figure 1. 
The accuracy of the surrogate model for approximating 
fitness functions relies on the sampling technology and the 
sample updating technology. DyHF-GP uses Latin 
hypercube sampling(LHS) [12], which can ensure that all 
portions of the vector space is represented. In order to use the 
real values of original function effectively during the 
evolution, a dynamic sample capacity of points is set. In the 
course of evolution, the sample-set is needed to be update 
dynamically by retention and replacement mechanism: Find 
out points in population P whose G-values are 0, if the 
number of sample point is less then upper limit, then add 
these points into sample-set, otherwise, replace some points 
who have the maximum G-value by these points. By this 
mechanism, with the process of evolution, sample points will 
become more concentrated near the feasible region. GP 
model would predict the values more accurate and converge 
faster in a small region. 

Figure 1.  Framework of the combination of DyHF and GP 

After updating the sample-set, GP model should be 
updated based on the new sample-set in order to improve the 
prediction precision. If the frequency of updating is too low, 
the prediction model will run out large errors and converge 
slowly; on the contrary, the updating may consume a large 
amount of computational costs. DyHF-GP uses a method to 
update GP model dynamically. The number of new 

replacement sample points is as the basis of judgment. 
Updating the model when the number reaches the upper limit 
set in advance, while the upper limit changes with the 
evolution and relate to the sample capacity, feasible rate and 
function dimension. In the initial stage of evolution, the 
feasible rate is low, so the frequency of updating should be 
increased in order to make individuals evolve to feasible 
region. With the increase of feasible solutions, frequent 
updating the model has little effect on predicting, instead it 
may costs much more. In addition, the frequency should be 
lower when the sample capacity is larger and the dimension 
of function is lower. 

When evaluating the fitness, too much usage of GP 
model may cause harder to obtain the exact optimal ever can 
not converge because of the superposition of errors in the 
model. While too much usage of original objective functions 
will fail to effectively reduce the number of FES. In order to 
maintain a balance, DyHF-GP counts the errors between 
objective functions and Optimal values are less than a 
threshold in continuous generations. If all the errors are less 
than a threshold(like 10-8), then the original objective 
function is used to evaluate the fitness, otherwise, the GP 
model is used. 

C. Algorithm Flowchart and Steps 

 The flowchart of DyHF-GP is shown in Figure 2. 
 DyHF-GP adopts the following steps for solving 

expensive COPs: 
Step 1: Initializing. Sample points as the sample-set from 

search space S using LHS and generate an initial population 
P by choosing NP points from sample points, evaluate the f-
value and the G-value for each point, and compute the 
number of feasible solutions(NF) in P, Establish the GP 
model. Set count_diff=0, which means the errors between 
objective functions and Optimal values are less than a 
threshold in continuous count_diff generations. Set 
count_max, which means the maximum of count_diff. Set the 
number of updating(increasing or replaced) sample points 
sample_len=0. 

  Step 2: Choosing the search model. If 
( ) /rand NP NF NP< −  , where rand is a uniformly distributed 

random number between 0 and 1, then the local search is 
applied, otherwise, the global search is applied. 

Step 3: Local/Global search model: if count_diff > 
cout_max, then using the original objective function to 
compute the fitness of the new individuals generated during 
the search and updating the new individuals, otherwise, using 
GP model to predict the fitness. Update sample_len. 

  Step 4: Compute the number of feasible solutions (NF) 
in P. Replace individuals in sample-set who have the  
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Figure 2.  The flowchart of DyHF-GP 

maximum G-value by individuals in P whose G-value equal 
to 0, or add these individuals in P into the sample-set. Update 
sample_len and count_diff. 

  Step 5: If sample_len >= (m/(n*n))*(NF/NP), then 
update the GP model. 

  Step 6: If the stopping criterion is met, stop and output 
the best solution in P, else go to Step 2. 

IV. EXPERIMENTAL ANALYSIS 

The performance of DyHF is assessed on 13 benchmark 
test functions. For each test function, 25 independent runs are 
performed. The actual parameter settings are m=400, and 
extra_m=100. 

All data tables are shown on the last page of this 
document. 

Table 1 shows the number of FES to achieve the success 
condition:  0001.0)()( * ≤− xfxf

  and the feasible rate. 
As shown in Table I, feasible rate in the population is not 

reached 100% when the DyHF-GP achieves the success 
condition, but the FES is reduced 66.4%-98% compared with 
DyHF. Hence one can see that DyHF-GP can reduce the FES 
significantly for expensive COPs and save a lot of 
computational overhead. 

Table II-IV shows thee Function Error values between 
objective functions and Optimal values and Feasible Rate 
when max FES=1*103 and FES = 5*103. 

From Table II-IV, compared with DyHF, DyHF-GP can 
obtain a higher accuracy for most test functions under the 
condition of the same or less FES, which means that the 
DyHF-GP can be accurate for solving expensive COPs. 

From the experiments results, we can know that 
expensive COPs are very complex. For g09,g13,etc., there 
decision spaces are small. Although the feasible rates are 
outstanding, they are difficult to converge to the exact 
optimal solutions; To the contrary, for g05,g17,etc., there 
decision space are two small. A small number of sample 

points could not obtain an accurate prediction model, which 
may cause large errors. 

V. CONCLUSION 

For expensive COPs, computing the objective functions 
and the degree of constraint violation requires high 
computational costs. How to make the objective and 
constraint violation function assessment become efficient is a 
significant research topic. This paper proposes the DyHF-GP, 
which can effectively reduce the number of FES, utilizing 
GP model to predict/approximate the original objective 
functions and update the model dynamically. A 
comprehensive inspection of the algorithm is shown by some 
test functions. Expensive COPs in the real-world are very 
complex. Thus, constructing a prediction model of less error 
and improving the accuracy of the algorithm are still in need 
of further research. 
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TABLE I.  NUMBER OF FES TO ACHIEVE THE SUCCESS CONDITION, FEASIBLE RATE 

Algorithm Prob. Best Mean Feas.Rate Prob. Best Mean Feas.Rate
DyHF-GP g04 2360 2997 0.904 g15 49 121 0.273 

DyHF 34300 40235 1 15540 23038 1 
DyHF-GP g05 1418 1537 0.929 g16 1897 2386 0.951 

DyHF 41580 47236 1 25620 30300 1 
DyHF-GP g06 1800 2090 0.776 g18 1728 1853 0.964 

DyHF 27580 37720 1 76300 88379 1 
DyHF-GP g08 367 411 0.694 g21 2537 2768 0.764 

DyHF 840 1223 1 68180 102180 1 
DyHF-GP g10 3194 3467 0.986 g23 1517 1678 0.921 

DyHF 121380 142652 1 134260 161145 1 
DyHF-GP g11 18 40 0.123 g24 872 1048 0.783 

DyHF 3500 5768 1 11620 14284 1 
DyHF-GP g12 81 191 0.575 

 DyHF 420 3012 1 

TABLE II.  FUNCTION ERROR VALUES AND FEASIBLE RATE FOR TEST FUNCTION G04,G05,G06,G08,G10,G11 

Algorithm DyHF-GP DyHF DyHF-GP DyHF DyHF-GP DyHF 
Prob. g04 g05 g06 

Max FES 5*103 5*103 3*103 5*103 5*103 5*103 
Best 0.0000e+00 4.5215e+01 1.6358e-05 9.3455e+00 2.0476e-07 3.2389e+00 

Mean 0.0000e+00 1.6291e+02 3.5289e-05 2.1005e+02 5.2381e-06 9.4927e+01 
Feasi. Rate 1 0.693 0.936 0 0.921 0.286 

Prob. g08 g10 g11 
Max FES 1*103 5*103 5*103 5*103 1*103 5*103 

Best 1.7539e-08 1.9667e-08 -6.3665e-12 4.2652e+03 2.9022e-08 2.0256e-05 
Mean 6.3215e-08 2.5249e-08 -3.2548e-11 8.9299e+03 6.4857e-07 2.0494e-04 

Feasi. Rate 0.829 0.329 0.764 0 0.707 0.093 

TABLE III.  FUNCTION ERROR VALUES AND FEASIBLE RATE FOR TEST FUNCTION G12,G15,G16,G18,G21,G23 

Algorithm DyHF-GP DyHF DyHF-GP DyHF DyHF-GP DyHF 
Prob. g12 g15 g16 

Max FES 1*103 5*103 1*103 5*103 4*103 5*103 
Best 0.0000e+00 2.6445e-06 1.6741e-05 7.3492e-02 1.3574e-12 6.0594e-02 

Mean 0.0000e+00 5.2996e-05 8.2475e-04 2.4183e-01 5.1285e-11 1.4394e-01 
Feasi. Rate 1 0.707 0.857 0 0.936 0.186 

Prob. g18 g21 g23 
Max FES 3*103 5*103 4*103 5*103 3*103 5*103 

Best 2.2204e-16 5.4452e+00 2.0233e-05 1.1590e+02 4.5869e-05 -2.2944e+02 
Mean 7.2642e-15 4.1775e-01 3.2791e-04 1.6414e+02 2.1248e-05 -2.9184e+02 

Feasi. Rate 0.886 0 0.936 0 0.948 0 

TABLE IV.  FUNCTION ERROR VALUES AND FEASIBLE RATE FOR TEST FUNCTION G24 

     Prob. 
  Error 

g24 
DyHF-GP DyHF 

Max FES 2*103 5*103 
Best 1.9654e-07 1.9054e-03 

Mean 7.2421e-06 1.3918e-02 
Feasible Rate 0.900 0.764 
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