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Abstract

The reduction of nonlinear ordinary differential equations by a combination of first
integrals and Lie group symmetries is investigated. The retention, loss or even gain
in symmetries in the integration of a nonlinear ordinary differential equation to a first
integral are studied for several examples. The differential equations and first integrals
are expressed in terms of the invariants of Lie group symmetries. The first integral
is treated as a differential equation where the special case of the first integral equal
to zero is examined in addition to the nonzero first integral. The inverse problem
for which the first integral is the fundamental quantity enables some predictions of
the change in Lie group symmetries when the differential equation is integrated. New
types of hidden symmetries are introduced.

1 Introduction

The reduction of the order of a nonlinear ordinary differential equation (NLODE) is a basic
procedure in the reduction of a NLODE to quadratures. The reduction of an NLODE to
a linear ODE is also useful since there are many methods for solving linear ODEs. The
reduction in order can be done by use of Lie group symmetries or by integration of the
NLODE to a first integral. Hidden symmetries have been helpful in understanding the
possible paths for reduction in order. Hidden symmetries have been defined with reference
to Lie group symmetries [28, 1–9, 11, 17–19, 25]. A Type I hidden symmetry has been
defined as a Lie symmetry that is lost (not inherited) in addition to the Lie symmetry
that is used to reduce the ODE by one order. In any given reduction of an ODE by one
order more than one Lie symmetry may be lost. A Type II hidden symmetry has been
defined as a Lie symmetry that appears in addition to inherited Lie symmetries when the
ODE is reduced by one order when using a Lie symmetry. A Type I hidden symmetry
arises because the symmetry group that is lost is not a normal subgroup. For an abelian
Lie symmetry group of an ODE no Type I hidden symmetries appear as the order of the
ODE is reduced. Additional reductions in order do not produce Type I hidden symmetries
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and the reductions continue until the ODE is reduced to quadratures or the symmetries
are depleted. Type I hidden symmetries may arise if the Lie group symmetry of an ODE
is represented by a nonabelian Lie algebra. The origin of Type I hidden symmetries can
be predicted by examining the commutator of the group generators of the form

[Ui, Uj ] = Ck
ijUk, (1.1)

where Ui, Uj and Uk are local group generators and the structure constant of the group Ck
ij

is a real number. If Ck
ij �= 0, the reduction of an ODE by the symmetry of Ui (Uj) loses

(does not inherit) the symmetry of Uj (Ui) in the reduced ODE. The origin of all Type II
hidden symmetries is not so obvious. Some arise from nonlocal symmetries. If an ODE
is reduced by the symmetry of Ui in the commutator above with Ui, Uj and Uk distinct,
the symmetry of Uj will not be inherited in the reduced ODE but becomes a nonlocal
symmetry. If the reduced ODE can be reduced further by the inherited symmetry of Uk,
the nonlocal symmetry is transformed to an inherited Lie point symmetry of Uj [3].

A first integral I is here defined for an ODE

F
(
x, y, y′, y′′, . . . , y(n)

)
= 0 (1.2)

as

I = f
(
x, y, y′, y′′, . . . , y(n−1)

)
, (1.3)

where

dI

dx

∣∣∣∣
F=0

=
df

(
x, y, y′, y′′, . . . y(n−1)

)
dx

∣∣∣∣∣
F=0

= µ
(
x, y, y′, y′′, . . . , y(n−1)

)
F

(
x, y, y′, y′′, . . . , y(n)

)∣∣∣
F=0

= 0 (1.4)

and µ
(
x, y, y′, y′′, . . . , y(n−1)

)
is an integrating factor. The ′ denotes differentiation with

respect to x, where for derivatives above the third order the ′ is replaced by the order n
as a superscript. Integration of the ODE (1.2) to the first integral I reduces the order by
one. We consider the first integrals as ODEs in this paper [25].

First integrals are another means for reducing the order of an ODE [28, 24, 14, 16, 25].
Symmetries of first integrals of the linear ODE, y′′ = 0, have been previously studied in
terms of a basis of three first integrals [25]. The viewpoint here differs from that approach.
The NLODE and its first integral are studied in terms of their Lie group invariants: the
path curve that is a function of x and y [12], the differential invariants and a constant, an
invariant that is often omitted in discussions. Also we concentrate on the inverse problem;
that is we start with the first integral and differentiate it to find the ODE. It is more
predictive to consider the inverse problem and that does suggest what may happen to the
symmetries for an ODE integrated to its first integral. We consider several examples of
nonlinear ODEs.

We do not consider nonlocal symmetries that are used to reduce the order of NLODEs
directly [15, 26, 27] nor do we deal with potential symmetries [10] that use Bäcklund
transformations. These techniques offer other paths to the reduction of order of ODEs.



Hidden Symmetries and First Integrals 3

2 Symmetries of NLODEs and their first integrals

We start with a second-order NLODE that has one Lie group symmetry and a first integ-
ral. If the ODE is found by an Euler–Lagrange equation, the ODE can be reduced to
quadratures since the first integral retains the Lie symmetry by Noether’s Theorem [28].
Consider the modified Emden equation [23]

q̈ +
5
T

q̇ + q2 = 0, (2.1)

where the overdot denotes the time T derivative. By use of finite symmetries or by the
application of the Lie classical method one finds that the group generator for the Lie
symmetry of (2.1) is

U = T
∂

∂T
− 2q

∂

∂q
. (2.2)

The canonical coordinates for (2.1) as found from (2.2) are

t = lnT, u = qT 2. (2.3)

The transformation of (2.1) to the new coordinates reduces it to

F (utt, u) = utt − 4u + u2 = 0. (2.4)

The path curve is u (not unique); the second differential invariant is utt for the transformed
group generator Ũ = ∂/∂t. The first integral is found by the usual method of multiplying
by the integrating factor ut and integrating. The first integral I is

I =
u2

t

2
+ 2u2 − u3

3
, (2.5)

where I is a Lagrangian. It can be reduced by another order to quadratures since it is still
invariant under the group denoted by Ũ . The first integral in (2.5) can be transformed
back to the first integral in the (q, T ) variables [23]. Equation (2.1) is an example of
a NLODE that can be reduced by two orders because it is a Euler–Lagrange equation and
is invariant under one Lie point symmetry. The ODE (2.1) can be reduced to quadratures
without recourse to canonical coordinates as well [20, 29]. The symmetry of the Emden
equation and its first integral have been discussed previously [22]. The possible reductions
in order for a NLODE with a first integral and several Lie group symmetries are quite
complicated [21] and are considered in the next examples.

The second example is the nonlinear third-order ODE

y′′′ = yy′′ + y′2, (2.6)

where ′ again denotes differentiation with respect to x. The group generators for the Lie
symmetries are U1 = ∂/∂x and U2 = x∂/∂x − y∂/∂y. A first integral I exists in addition
where

I1 = y′′ − yy′. (2.7)
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However, the first integral (as an ODE) loses a Lie symmetry and has only U1 = ∂/∂x.
We can see the structure better by looking at the invariants of the two-parameter group
of (2.6). These can be found in several ways and are

χ1 =
y′

y2
, χ2 =

y′′

y3
, χ3 =

y′′′

y4
. (2.8)

A constant is also an invariant here. Equation (2.6) in terms of invariants becomes

χ3 = χ2 + χ2
1. (2.9)

Equation (2.7) cannot be written in terms of these invariants but only in terms of the
invariants of U1 = ∂/∂x: y, y′, y′′. Clearly to retain the symmetries of the original
ODE, here (2.6), one needs to find the first integral as a function of two-parameter group
invariants. However, the first integral I1 can be found as a nonlocal function of the
invariants of U2: χ0 = xy and χ1, χ2, χ3 in (2.8). To see this we express (2.6) in terms of
the invariants of U2 and find the characteristic equations of the appropriate form of (1.3)
in the invariants. The invariant χ3 is eliminated in the first-order, nonlinear ordinary
differential equations in the invariants. The resultant set of NLODEs is integrated to give
the first integral where the term dx/x is eliminated by solving for it from χ0 and χ1. The
first integral is

I1 = (χ2 − χ1) exp
(
3

∫
χ1dχ0

χ0χ1 + 1

)
. (2.10)

This first integral I1 has the same form as I1 in (2.7) when the invariants are expressed in
terms of the original variables. We note the Blasius equation [10] has a first integral that
is a nonlocal function of its invariants but both symmetries are lost.

For I1 �= 0 another first integral can be found, this time from (2.7) as

y′ =
y2

2
+ I1x + J1. (2.11)

for J1 a constant. This is a Riccati equation [13] and can be transformed to a linear
second-order ODE. Again the first integral J1 is a nonlocal function of the invariants
of U1. The special case of setting the first integral to zero is similar to the condition for
potential symmetries but there a Bäcklund transformation is used. For the special case of
I1 = 0 we can write (2.7) in terms of the two-parameter group invariants as

y′′

y3
− y′

y2
= 0, (2.12)

where the two-parameter symmetry group is retained for this special case. For the I1 = 0
case we can also substitute for y = y′′/y′ in (2.6). Then the resultant NLODE has a Lie
group symmetry represented by three group generators: U1 = ∂/∂x, U2 = x∂/∂x−y∂/∂y,
U3 = ∂/∂y. We have replaced the first integral and a two-parameter Lie group symmetry
of (2.6) by a three-parameter Lie group symmetry for the modified NLODE.

For the NLODE in (2.6) we have different outcomes depending on whether I1 �= 0 or
I1 = 0. In the former case a Lie group symmetry is lost upon integration of the NLODE to
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the first integral. This loss of a symmetry may be viewed as a new type of Type I hidden
symmetry where the stretching symmetry is blocked by the constant I1. The Type I
hidden symmetry that occurs when the order of an ODE is reduced by the use of a Lie
group symmetry results in a nonlocal group generator whereas here the first integral is
a nonlocal function of the invariants of the lost symmetry. For I1 = 0 no symmetry is lost
and in fact the equivalent NLODE is invariant under a three-parameter Lie group.

The invariants of the Lie symmetry group are crucial in our analysis of the reduction
of the order of the NLODE by use of first integrals. It is more direct to consider the
first integral in terms of its invariants and then differentiate the first integral to find the
NLODE. Consequently, we change from the usual perspective that regards the original
NLODE as the starting point and instead view the first integral as fundamental. We
investigate how the symmetry groups are altered when it is differentiated to form the
higher order NLODE. When I1 in (2.7) is differentiated, the resultant (2.6) has another
symmetry because there is a stretching symmetry between the terms in the ODE. A first
integral with the same symmetries as (2.6) but a different form than (2.6) is

I2 =
y′′

y3
− y′

y2
. (2.13)

The stretching symmetry in (2.13) arises in each term singly and is not shared between
terms; consequently, it is retained in the differentiation. The NLODE found by differen-
tiating I2 is

y′′′

y4
= 3

y′′

y3

y′

y2
+

y′′

y3
− 2

(
y′

y2

)2

. (2.14)

Stated another way the symmetry of NLODE of (2.14) is retained in the first integral (2.13)
as compared to the loss of a symmetry of NLODE of (2.6) when it is integrated to its first
integral in (2.7). In this example the symmetry of the NLODE is retained when integrated
to form a first integral because the symmetries are present in each term and not shared
between terms.

The third-order first integral I3

I3 =
y′′′

y′3
− K1

y′′

y′2
− K2y (2.15)

arises from a fourth-order ODE that is invariant under a three-parameter group with Lie
group generators

U1 =
∂

∂x
, U2 = x

∂

∂x
, U3 =

∂

∂y
(2.16)

and integrates to this first integral. The symmetry group represented by U3 is lost in
the first integral, however. Again we find the new Type I hidden symmetry and the first
integral I can be expressed as a nonlocal function of the invariants of U3. Furthermore,
one cannot eliminate y from the fourth-order NLODE since differentiation of the first
integral eliminates y from the fourth-order NLODE. The first integral retains the three-
parameter symmetry group of the fourth-order NLODE only by setting K2 = 0. The
NLODE in (2.15) has only two Lie group symmetries for K2 �= 0 so that reduction to
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quadratures is not expected. It can be reduced to a linear, second-order ODE in y′2 but
the solution has not been attempted. We see that when a first integral is written in terms
of invariants, other symmetries may arise when it is differentiated.

The final first integral considered is

I4 = 2y′y′′′ − 3y′′2. (2.17)

For I4 = 0 this is the Kummer–Schwarz equation [22] and is invariant under the maximum
number of contact symmetries, 10, for a third-order ODE. It is invariant, however, under
a six-parameter Lie group rather than the seven-parameter Lie group that is the maximum
dimension Lie group for a third-order ODE. It is invariant under a three-parameter Lie
group with group generators: U1 = ∂/∂x, U2 = ∂/∂y, U3 = x∂/∂y − 2y∂/∂y for I4 �=
0. The NLODE (2.17) can be reduced to quadratures by choosing the symmetries for
reduction in the correct order. The NLODE found by differentiation of the first integral I4

with respect to x gives

y′y(4) − 2y′′y′′′ = 0 (2.18)

and this NLODE is invariant under a four-parameter group with group generators U1 =
∂/∂x, U2 = ∂/∂y, Ũ3 = x∂/∂x, Ũ4 = y∂/∂y. The split of the stretching group represented
by U3 to Ũ3 and Ũ4 arises because the symmetries are not present in each term separately
but are shared among the two terms in (2.18). For I4 �= 0 integration of the NLODE
in (2.18) to a first integral results in the loss of one symmetry where linear combinations
of Ũ3 and Ũ4 can give U3 and another group generator. Again a first integral is found for
a lost symmetry as a nonlocal function of the invariants. In addition another first integral
of the (2.18) exists, I5 = y′′′/y′′2.

For I4 = 0 there are six Lie group symmetries of (2.17) represented by the group
generators U1 = ∂/∂x, U2 = ∂/∂y, Ũ3 = x∂/∂x, Ũ4 = y∂/∂y, U5 = y∂/∂x, U6 = x∂/∂y.
However, the inherited Lie group symmetries found by differentiating (2.17) remain the
four of (2.18). In this case the reduction in order of (2.18) by integration produces more
symmetries if I4 = 0. We have a new Type II hidden symmetry, the appearance of
new symmetries upon reduction of order of the NLODE. The increase in the number of
symmetries in the first integral can be understood by considering the inverse problem.
Express the NLODE in (2.18) for I4 = 0 in the invariants of the subgroup represented
by U6 above. The first integral (2.17) must be zero as well as the (2.18) hold. This
means that the NLODE (2.18) can be regarded as the differential consequences of the first
integral where both must hold.

3 Conclusion

We have studied the reduction of order of nonlinear ordinary differential equations by
investigating the change of their Lie point symmetries when the NLODEs are integrated to
a first integral. Several examples of NLODEs have been studied in terms of the invariants
of the Lie group symmetries. Investigation of the inverse problem, the change of Lie group
symmetries of first integrals upon differentiation, has been useful in understanding the
inheritance of Lie symmetries of the NLODEs. Two cases have been studied for the first
integral I: I �= 0 and I = 0. Although no test has emerged for the fate of all symmetries
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upon integration of a NLODE to a first integral, some properties have been identified. For
I �= 0 the symmetries may be retained upon integration of the NLODE to a first integral
or the order of the symmetry group may be reduced. The latter case is identified as a new
Type I hidden symmetry. For example, the stretching symmetries that hold for each term
in the ODE separately can be retained but those shared between terms are reduced. The
first integral I can be found as a nonlocal function of the invariants of the lost symmetry.
For I = 0 the stretching symmetries may be retained in number even if changed in form.
There is even a case where the order of the symmetry group increases upon integration
of the ODE to the first integral for I = 0. This is identified as a new Type II hidden
symmetry. The study is an effort to understand some facets of the change of symmetries
of NLODEs upon integration to a first integral by concentrating on the inverse problem
and analyzing the NLODE and its first integral in terms of its Lie group invariants.
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