Algebra $gl(\lambda)$ Inside the Algebra of Differential Operators on the Real Line

H GARGOUBI

I.P.E.I.M., route de Kairouan, 5019 Monastir, Tunisia E-mail: hichem.gargoubi@ipeim.rnu.tn

Received November 22, 2001; Revised February 26, 2002; Accepted March 12, 2002

Abstract

The Lie algebra $gl(\lambda)$ with $\lambda \in \mathbb{C}$, introduced by B L Feigin, can be embedded into the Lie algebra of differential operators on the real line (see [7]). We give an explicit formula of the embedding of $gl(\lambda)$ into the algebra \mathcal{D}_{λ} of differential operators on the space of tensor densities of degree λ on \mathbb{R} . Our main tool is the notion of projectively equivariant symbol of a differential operator.

1 Introduction

The Lie algebra $gl(\lambda)$ ($\lambda \in \mathbb{C}$) was introduced by B L Feigin in [7] for calculation the cohomology of the Lie algebra of differential operators on the real line. The algebra $gl(\lambda)$ is defined as the quotient of the universal enveloping algebra $U(sl_2)$ of sl_2 with respect to the ideal generated by the element $\Delta - \lambda(\lambda - 1)$, where Δ is the Casimir element of $U(sl_2)$. $gl(\lambda)$ is turned into a Lie algebra by the standard method of setting [a, b] = ab - ba.

According to Feigin, $gl(\lambda)$ can be considered as an analogue of gl(n) for $n = \lambda \in \mathbb{N}$; it is also called the algebra of matrices of complex size, see also [13, 16, 17, 12].

We consider the space \mathcal{D}_{λ} of all linear differential operators acting on tensor densities of degree λ on \mathbb{R} . One of the main results of [7] is the construction of an embedding $gl(\lambda) \to \mathcal{D}_{\lambda}$.

The purpose of this paper is to give an explicit formula of this embedding. We also show that this embedding realizes the isomorphism of Lie algebras $gl(\lambda) \cong \mathcal{D}_{\lambda}^{pol}$ constructed in [1, 2], where $\mathcal{D}_{\lambda}^{pol} \subset \mathcal{D}_{\lambda}$ is the subalgebra of differential operators with polynomial coefficients.

The main idea of this paper is to use the *projectively equivariant symbol* of a differential operator, that is an sl₂-equivariant way to associate a polynomial function on $T^*\mathbb{R}$ to a differential operator. The notion of projectively equivariant symbol was defined in [4, 15] and used in [8, 9, 10] for study of modules of differential operators.

Copyright © 2002 by H Gargoubi

2 Basic definitions

2.1 The Lie algebra $gl(\lambda)$. Let $Vect(\mathbb{R})$ be the Lie algebra of smooth vector fields on \mathbb{R} with complex coefficients: $X = X(x)\partial$, where X(x) is a smooth complex function of one real variable; $X(x) \in C^{\infty}(\mathbb{R}, \mathbb{C})$, and where $\partial = \frac{d}{dx}$. Consider the Lie algebra $sl_2 \subset Vect(\mathbb{R})$ generated by the vector fields

$$\left\{\partial, x\partial, x^2\partial\right\}.\tag{2.1}$$

Denote $e_i := x^i \partial$, i = 0, 1, 2, the Casimir element

$$\Delta := e_1^2 - \frac{1}{2}(e_0e_2 + e_2e_0)$$

generates the center of $U(sl_2)$. The quotient

$$\operatorname{gl}(\lambda) := \operatorname{U}(\operatorname{sl}_2)/(\Delta - \lambda(\lambda - 1)), \qquad \lambda \in \mathbb{C}$$

is naturally a Lie algebra containing sl_2 .

2.2 Modules of differential operators on \mathbb{R} . Denote \mathcal{D} the Lie algebra of linear differential operators on \mathbb{R} with complex coefficients:

$$A = a_n(x)\partial^n + a_{n-1}(x)\partial^{n-1} + \dots + a_0(x),$$
(2.2)

with $a_i(x) \in C^{\infty}(\mathbb{R}, \mathbb{C})$.

For $\lambda \in \mathbb{C}$, Vect(\mathbb{R}) is embedded into the Lie algebra \mathcal{D} by:

$$X \mapsto L_X^{\lambda} := X(x)\partial + \lambda X'(x). \tag{2.3}$$

Denote \mathcal{D}_{λ} the Vect(\mathbb{R})-module structure with respect to the adjoint action of Vect(\mathbb{R}) on \mathcal{D} . The module \mathcal{D}_{λ} has a natural filtration: $\mathcal{D}_{\lambda}^{0} \subset \mathcal{D}_{\lambda}^{1} \subset \cdots \subset \mathcal{D}_{\lambda}^{n} \subset \cdots$, where $\mathcal{D}_{\lambda}^{n}$ is the module of *n*-th order differential operators (2.2).

Geometrically speaking, differential operators are acting on tensor densities, namely: $A: \mathcal{F}_{\lambda} \to \mathcal{F}_{\lambda}$, where \mathcal{F}_{λ} is the space of tensor densities of degree λ on \mathbb{R} (i.e., of sections of the line bundle $(T^*\mathbb{R})^{\otimes \lambda}, \lambda \in \mathbb{C}$), that is: $\phi = \phi(x)(dx)^{\lambda}$, where $\phi(x) \in C^{\infty}(\mathbb{R}, \mathbb{C})$.

It is evident that $\mathcal{F}_{\lambda} \cong C^{\infty}(\mathbb{R}, \mathbb{C})$ as linear spaces (but not as modules) for any λ . We use this identification throughout this paper. The Lie algebra structures of differential operators acting on the space of tensor densities and on the space of functions are also identified (see [8]).

The Vect(\mathbb{R})-modules \mathcal{D}_{λ} were considered by classics (see [3, 18]) and, recently, studied in a series of papers [5, 9, 8, 10, 14].

2.3 Principal symbol. Let $Pol(T^*\mathbb{R})$ be the space of functions on $T^*\mathbb{R}$ polynomial in the fibers. This space is usually considered as the space of symbols associated to the space of differential operators on \mathbb{R} .

Recall that the *principal symbol* of a differential operator is the linear map $\sigma : \mathcal{D} \to \text{Pol}(T^*\mathbb{R})$ defined by:

$$\sigma(A) = a_n(x)\xi^n,$$

where A is a differential operator (2.2) and ξ is the coordinate on the fiber.

One can also speak about the principal symbol of an element of $U(sl_2)$. Indeed, $U(sl_2)$ is canonically identified with the symmetric algebra $S(sl_2)$ as sl_2 -modules (see, e.g., [6, p.82]). Using the realization (2.1), the algebra $S(sl_2)$ can be projected to $Pol(T^*\mathbb{R})$. Therefore, one can define in a natural way the principal symbol on $S(sl_2)$.

Our goal is to construct an sl₂-equivariant linear map $T_{\lambda} : U(sl_2) \to \mathcal{D}_{\lambda}$ which preserves the principal symbol, i.e., such that the following diagram commutes:

$$\begin{array}{cccc} \mathrm{U}(\mathrm{sl}_2) & \stackrel{T_{\lambda}}{\longrightarrow} & \mathcal{D}_{\lambda} \\ \sigma & & & \downarrow \sigma \\ \mathrm{Pol}(T^*\mathbb{R}) & \stackrel{id}{\longrightarrow} & \mathrm{Pol}(T^*\mathbb{R}) \end{array}$$

2.4 Projectively equivariant symbol. Viewed as a Vect(\mathbb{R})-module, the space of symbols corresponding to \mathcal{D}_{λ} has the form:

$$\operatorname{Pol}(T^*\mathbb{R}) \cong \mathcal{F}_0 \oplus \mathcal{F}_1 \oplus \dots \oplus \mathcal{F}_n \oplus \dots$$
 (2.4)

The space of polynomials of degree $\leq n$ is a submodule of $\operatorname{Pol}(T^*\mathbb{R})$ which we denote $\operatorname{Pol}_n(T^*\mathbb{R})$.

The following result of [8] allows one to identify, for arbitrary λ , \mathcal{D}^n_{λ} with $\operatorname{Pol}_n(T^*\mathbb{R})$ as sl₂-modules:

(i) There exists a unique $\mathrm{sl}(2,\mathbb{R})$ -isomorphism $\sigma_{\lambda}: \mathcal{D}_{\lambda}^{n} \to \mathrm{Pol}_{n}(T^{*}\mathbb{R})$ preserving the principal symbol.

(ii) σ_{λ} associates to each differential operator A the polynomial $\sigma_{\lambda}(A) = \sum_{p=0}^{n} \bar{a}_{p}(x)\xi^{p}$, defined by:

$$\bar{a}_p(x) = \sum_{j=p}^n \alpha_p^j a_j^{(j-p)},$$
(2.5)

where the constants α_p^j are given by:

$$\alpha_p^j = \frac{\binom{j}{p}\binom{2\lambda-p}{j-p}}{\binom{j+p+1}{2p+1}}$$

(the binomial coefficient $\binom{\lambda}{j} = \lambda(\lambda - 1) \cdots (\lambda - j + 1)/j!$ is a polynomial in λ).

The isomorphism σ_{λ} is called the *projectively equivariant symbol map*. Its explicit formula was first found in [4, 15] in the general case of pseudo-differential operators on a one-dimensional manifold (see also [15] for the multi-dimensional case).

3 Main result

In this section, we give the main result of this paper. We adopt the following notations:

$$\left[L_{X_1}^{\lambda}L_{X_2}^{\lambda}\cdots L_{X_n}^{\lambda}\right]_+ := \sum_{\tau\in S_n} L_{X_{\tau(1)}}^{\lambda} \circ L_{X_{\tau(2)}}^{\lambda} \circ \cdots \circ L_{X_{\tau(n)}}^{\lambda}$$

for a symmetric *n*-linear map from $\operatorname{Vect}(\mathbb{R})$ to \mathcal{D} and

$$(X_1 X_2 \cdots X_n)_+ := \sum_{\tau \in S_n} X_{\tau(1)} X_{\tau(2)} \cdots X_{\tau(n)}$$

for a symmetric *n*-linear map from sl_2 to $U(sl_2)$, where S_n is the group of permutations of n elements and $X_i \in sl_2$.

Theorem 1. (i) For arbitrary $\lambda \in \mathbb{C}$, there exists a unique sl₂-equivariant linear map preserving the principal symbol:

$$T_{\lambda}: \mathrm{U}(\mathrm{sl}_2) \to \mathcal{D}_{\lambda}$$

defined by

$$T_{\lambda}((X_1 X_2 \cdots X_n)_+) = [L_{X_1}^{\lambda} L_{X_2}^{\lambda} \cdots L_{X_n}^{\lambda}]_+,$$
(3.1)

where $X_i \in \{e_0, e_1, e_2\}, L_{X_i}^{\lambda}$ given by (2.3) and n = 1, 2, ...

(ii) The operator T_{λ} is given in term of the sl₂-equivariant symbol (2.5) by:

$$\sigma_{\lambda}([L_{X_1}^{\lambda}L_{X_2}^{\lambda}\cdots L_{X_n}^{\lambda}]_+) = \sum_{\substack{0 \le k \le n \\ k \text{ even}}} P_k^n(\lambda)\mathcal{A}_k(X_1,\dots,X_n)\xi^{n-k},$$
(3.2)

where

$$\mathcal{A}_{k}(X_{1},\ldots,X_{n}) = \sum_{2p+m=k} {\binom{k/2}{p}} (-2)^{p} (X_{1}''\ldots X_{p}''X_{p+1}'\cdots X_{p+m}'X_{p+m+1}\cdots X_{n})_{+}$$
(3.3)

and

$$P_k^n(\lambda) = \sum_{p=0}^n \sum_{l=n-k}^n (l-n+k)! \, \frac{\binom{l}{n-k}^2 \binom{2\lambda-n+k}{l-n+k}}{\binom{n-k+l+1}{2n-2k+1}} \binom{n}{p} \binom{p}{l} \lambda^{n-p},\tag{3.4}$$

where ${p \\ l}$ is the Stirling number of the second kind¹.

It is worth noticing that the linear map T_{λ} does not depend on the choice of the PBWbase in U(sl₂).

4 Proof of Theorem 1

By construction, the linear map T_{λ} is sl₂-equivariant.

4.1 sl₂-invariant symmetric differential operators. To prove part (ii) of Theorem 1 one needs the following

¹We refer to [11] as a nice elementary introduction to the combinatorics of the Stirling numbers.

Proposition 1. For arbitrary $\mu \in \mathbb{C}$ and n = 1, 2, ..., there exists at most one, up to proportionality, sl_2 -equivariant symmetric operator $\otimes^n sl_2 \to \mathcal{F}_{\mu}$ which is differential with respect to the vector fields $X_i \in sl_2$. This operator exists if and only if $\mu = k - n$, where k is an even positive integer. It is denoted: $\mathcal{A}_k : \otimes^n sl_2 \to \mathcal{F}_{k-n}$, and defined by the expression (3.3).

Proof. Each k-th order differential operator $\mathcal{A} : \otimes^n \mathrm{sl}_2 \to \mathcal{F}_{\mu}$ is of the form:

$$\mathcal{A}(X_1, \dots, X_n) = \sum_{2p+m=k} \beta_p(x) (X_1'' \cdots X_p'' X_{p+1}' \cdots X_{p+m}' X_{p+m+1} \cdots X_n)_+,$$

where $\beta_p(x)$ are some functions.

The condition of sl_2 -equivariance for \mathcal{A} reads as follows:

$$X[\mathcal{A}(X_1,...,X_n)]' + \mu X' \mathcal{A}(X_1,...,X_n) = \sum_{i=1}^n \mathcal{A}(X_1,...,L_X^{-1}(X_i),...,X_n),$$

where $X \in sl_2$.

Substitute $X = \partial$ to check that the coefficients $\beta_p(x)$ do not depend on x. Substitute $X = x\partial$ to obtain the condition $\mu = k - n$. At last, substitute $X = x^2\partial$ and put $\beta_0 = 1$ to obtain, for even k, the coefficients from (3.3). If k is odd, one obtains $\beta_p = 0$ for all p. Proposition 1 is proven.

The general form (3.2) is a consequence of Proposition 1 and decomposition (2.4).

4.2 Polynomials $P_k^n(\lambda)$. To compute the polynomials P_k^n , put $X_1 = \cdots = X_n = x\partial$. One readily gets, from (3.2),

$$\sigma_{\lambda}(T_{\lambda}(X_1,\ldots,X_n))|_{x=1} = n! \sum_{\substack{0 \le k \le n \\ k \text{ even}}} P_k^n(\lambda) \xi^{n-k}.$$
(4.1)

Furthermore, using the well-known expression $(x\partial)^n = \sum_{l=0}^n {n \\ l } x^l \partial^l$, one has:

$$T_{\lambda}(X_1, \dots, X_n) = n! \ (x\partial + \lambda)^n$$
$$= n! \sum_{p=0}^n {n \choose p} (x\partial)^n \lambda^{n-p} = n! \sum_{p=0}^n \sum_{l=0}^n {n \choose p} {n \choose l} x^l \partial^l \lambda^{n-p}.$$

A straightforward computation gives the projectively equivariant symbol (2.5) of this differential operator:

$$\sigma_{\lambda}(T_{\lambda}(X_{1},\ldots,X_{n}))|_{x=1} = n! \sum_{\substack{0 \leq k \leq n \\ k \text{ even}}} \sum_{p=0}^{n} \sum_{l=n-k}^{n} (l-n+k)! \frac{\binom{l}{n-k}^{2}\binom{2\lambda-n+k}{l-n+k}}{\binom{n-k+l+1}{2n-2k+1}} \binom{n}{p} \binom{p}{l} \lambda^{n-p} \xi^{n-k}.$$

Compare with the equality (4.1) to obtain the formulae from (3.4).

Theorem 1 (ii) is proven.

4.3 Uniqueness. Let T be an sl₂-equivariant linear map $U(sl_2) \to \mathcal{D}_{\lambda}$ for a certain $\lambda \in \mathbb{C}$. In view of the decomposition (2.4), it follows from Proposition 1 that $\sigma_{\lambda} \circ T|_{\mathcal{F}_k} = c_k(\lambda)\mathcal{A}_k$, where $c_k(\lambda)$ is a constant depending on λ . Recall that $\operatorname{Pol}_n(T^*\mathbb{R})$ is a *rigid* sl₂-module, i.e., every sl_2-equivariant linear map on $\operatorname{Pol}_n(T^*\mathbb{R})$ is proportional to the identity (see, e.g., [15]). Assuming, now, that T preserves the principal symbol, the rigidity of $\operatorname{Pol}_n(T^*\mathbb{R})$ fixes the constants $c_k(\lambda)$ in a unique way. Hence the uniqueness of T_{λ} .

Theorem 1 is proven.

5 The embedding $\operatorname{gl}(\lambda) \to \mathcal{D}_{\lambda}$

A corollary of the uniqueness of the operator T_{λ} and results of [1, 2, 7, 17] is that the embedding $gl(\lambda) \to \mathcal{D}_{\lambda}$ constructed in [7] coincides with T_{λ} .

More precisely, according to results of [1, 2, 17], there exists a homomorphism of Lie algebras $p_{\lambda} : U(\mathrm{sl}_2) \to \mathcal{D}_{\lambda}$ preserving the principal symbol. The homomorphism p_{λ} is, in particular, sl_2 -equivariant. By uniqueness of T_{λ} , one has $T_{\lambda} = p_{\lambda}$. It is also proven that the kernel of p_{λ} is a two-sided ideal of $U(\mathrm{sl}_2)$ generated by $\Delta - \lambda(\lambda - 1)$ (see [1, 2]). Taking the quotient, one then has an embedding $\tilde{T}_{\lambda} : \mathrm{gl}(\lambda) \to \mathcal{D}_{\lambda}$. Since the embedding from [7]preserves the principal symbol, it is equal to \tilde{T}_{λ} . Finally, it is obvious that the image of T_{λ} is the subalgebra $\mathcal{D}_{\lambda}^{\mathrm{pol}} \subset \mathcal{D}_{\lambda}$ of differential operators with polynomial coefficients. Therefore, $\tilde{T}_{\lambda} : \mathrm{gl}(\lambda) \to \mathcal{D}_{\lambda}^{\mathrm{pol}}$ is a Lie algebras isomorphism.

6 Examples

As an illustration of Theorem 1, let us give the expressions of the general formulae (3.1) and (3.2) for the order n = 1, 2, 3, 4, 5. Let X_1, X_2, X_3, X_4 and X_5 be arbitrary vector fields in sl_2 .

1) The sl₂-equivariant symbol, defined by (2.5), of a first order operator of a Lie derivative $L_{X_1}^{\lambda}$ is

$$\sigma_{\lambda}(L_{X_1}^{\lambda}) = X_1(x)\xi.$$

2) The "anti-commutator" $[L_{X_1}^{\lambda}L_{X_2}^{\lambda}]_+$ has the following projectively equivariant symbol:

$$\sigma_{\lambda}([L_{X_1}^{\lambda}L_{X_2}^{\lambda}]_+) = (X_1X_2)_+\xi^2 + \frac{1}{3}\lambda(\lambda - 1)((X_1'X_2')_+ - 2(X_1''X_2)_+)$$

which also following from (2.5).

3) The projectively equivariant symbol of a third order expression $[L_{X_1}^{\lambda} L_{X_2}^{\lambda} L_{X_3}^{\lambda}]_+$ can be also easily calculated from (2.5). The result is:

$$\sigma_{\lambda}([L_{X_{1}}^{\lambda}L_{X_{2}}^{\lambda}L_{X_{3}}^{\lambda}]_{+}) = (X_{1}X_{2}X_{3})_{+}\xi^{3} + \frac{1}{5}(3\lambda^{2} - 3\lambda - 1)((X_{1}'X_{2}'X_{3})_{+} - 2(X_{1}''X_{2}X_{3})_{+})\xi.$$

4) Direct calculation from (2.5) gives the projectively equivariant symbol of a fourth order expression $[L_{X_1}^{\lambda}L_{X_2}^{\lambda}L_{X_3}^{\lambda}L_{X_4}^{\lambda}]_+$, that is:

$$\sigma_{\lambda}([L_{X_{1}}^{\lambda}L_{X_{2}}^{\lambda}L_{X_{3}}^{\lambda}L_{X_{4}}^{\lambda}]_{+}) = (X_{1}X_{2}X_{3}X_{4})_{+}\xi^{4} + \frac{1}{7}(6\lambda^{2} - 6\lambda - 5)((X_{1}'X_{2}'X_{3}X_{4})_{+} - 2(X_{1}''X_{2}X_{3}X_{4})_{+})\xi^{2} + \frac{1}{15}\lambda(\lambda - 1)(3\lambda^{2} - 3\lambda - 1)((X_{1}'X_{2}'X_{3}'X_{4}')_{+} - 4(X_{1}''X_{2}'X_{3}'X_{4})_{+} + 4(X_{1}''X_{2}''X_{3}X_{4})_{+}).$$

5) In the same manner, one can easily check that the sl₂-equivariant symbol of a fifth order expression $[L_{X_1}^{\lambda}L_{X_2}^{\lambda}L_{X_3}^{\lambda}L_{X_4}^{\lambda}L_{X_4}^{\lambda}]_+$ is:

$$\sigma_{\lambda}([L_{X_{1}}^{\lambda}L_{X_{2}}^{\lambda}L_{X_{3}}^{\lambda}L_{X_{4}}^{\lambda}L_{X_{5}}^{\lambda}]_{+}) = (X_{1}X_{2}X_{3}X_{4}X_{5})_{+}\xi^{5}$$

$$+ \frac{5}{9}(2\lambda^{2} - 2\lambda - 3)((X_{1}'X_{2}'X_{3}X_{4}X_{5})_{+} - 2(X_{1}''X_{2}X_{3}X_{4}X_{5})_{+})\xi^{3}$$

$$+ \frac{1}{7}(3\lambda^{4} - 6\lambda^{3} + 3\lambda + 1)((X_{1}'X_{2}'X_{3}'X_{4}'X_{5})_{+} - 4(X_{1}''X_{2}'X_{3}'X_{4}X_{5})_{+})$$

$$+ 4(X_{1}''X_{2}''X_{3}X_{4}X_{5})_{+})\xi.$$

Acknowledgments

I would like to thank V Ovsienko for statement of the problem. I am also grateful to Ch Duval and A El Gradechi for enlightening discussions.

References

- Beilinson A and Bernstein J, Localisation de g-modules, C.R. Acad. Sci. Paris Ser. I Math. 292 (1981), 15–18.
- [2] Beilinson A and Bernstein J, A Proof of Jantzen Conjectures, Adv. in Sov. Math. 16 (1993), 1–50.
- [3] Cartan E, Leçons sur la théorie des espaces à connexion projective, Gauthier Villars, Paris, 1937.
- [4] Cohen P, Manin Yu and Zagier D, Automorphic Pseudodifferential Operators, in Progr. Nonlinear Diff. Eq. Appl., Vol. 26, Birkhäuser, Boston, 1997, 17–47.
- [5] Duval C and Ovsienko V, Space of Second Order Linear Differential Operators as a Module Over the Lie Algebra of Vector Fields, Adv. in Math. 132, Nr. 2 (1997), 316–333.
- [6] Dixmier J, Algèbres enveloppantes, Gauthier Villars, Paris, 1974.
- [7] Feigin B L, The Lie Algebras $gl(\lambda)$ and Cohomologies of Lie Algebra of Differential Operators, Russian Math. Surveys, 43, Nr. 2 (1988), 157–158.
- [8] Gargoubi H, Sur la géométrie de l'espace des opérateurs différentiels linéaires sur R, Bull. Soc. Roy. Sci. Liège 69, Nr. 1 (2000), 21–47.

- [9] Gargoubi H and Ovsienko V, Space of Linear Differential Operators on the Real Line as a Module Over the Lie Algebra of Vector Fields, *Internat. Mathem. Res. Notices* Nr. 5 (1996), 235–251.
- [10] Gargoubi H and Ovsienko V, Modules of Differential Operators on the Real Line, Funct. Anal. Appl. 35, Nr. 1 (2001), 16–22.
- [11] Graham R, Knuth D and Patashnik O, Concrete Mathematics, Addison-Wesley, 1989.
- [12] Grozman P and Leites D A, Lie Superalgebras of Supermatrices of Complex Size. Their Generalizations and Related Integrable Systems, in Proc. Internatnl. Symp. Complex Analysis and Related Topics, Editors: E. Ramirez de Arellano, et. al., Mexico, 1996, Birkhäuser Verlag, 1999, 73–105.
- [13] Khesin B and Malikov F, Universal Drinfeld–Sokolov Reduction and the Lie Algebras of Matrices of Complex Size, Comm. Math. Phys. 175, Nr. 1 (1996), 113–134.
- [14] Lecomte P B A, Mathonet P and Tousset E, Comparison of Some Modules of the Lie Algebra of Vector Fields, *Indag. Math.*, N.S. 7, Nr. 4 (1996), 461–471.
- [15] Lecomte P B A and Ovsienko V, Projectively Invariant Symbol Calculus, Lett. Math. Phys. 49, Nr. 3 (1999), 173–196.
- [16] Leites D A and Sergeev A N, Orthogonal Polynomials of a Discrete Variable and Lie Algebras of Complex-Size Matrices, *Theor. Math. Phys.* 123, Nr. 2 (2000), 582–608.
- [17] Shoikhet B, Certain Topics on the Representation Theory of the Lie Algebra $gl(\lambda)$. Complex Analysis and Representation Theory. 1, J. Math. Sci. (New York) 92, Nr. 2 (1998), 3764–3806.
- [18] Wilczynski E J, Projective Differential Geometry of Curves and Ruled Surfaces, Leipzig Teubner, 1906.