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Abstract

We consider a wide class of model equations, able to describe wave propagation in
dispersive nonlinear media. The Korteweg-de Vries (KdV) equation is derived in this
general frame under some conditions, the physical meanings of which are clarified.
It is obtained as usual at leading order in some multiscale expansion. The higher
order terms in this expansion are studied making use of a multi-time formalism and
imposing the condition that the main term satisfies the whole KdV hierarchy. The
evolution of the higher order terms with respect to the higher order time variables can
be described through the introduction of a linearized KdV hierarchy. This allows one
to give an expression of the higher order time derivatives that appear in the right hand
member of the perturbative expansion equations, to show that overall the higher order
terms do not produce any secularity and to prove that the formal expansion contains
only bounded terms.

1 Introduction

Soliton theory is based on the resolution of the so-called “completely integrable equations”
by means of the inverse scattering transform (IST) method. When they describe particular
physical situations, these equations arise as asymptotics of well-established models, and are
derived from the latter by means of a multiscale expansion, or some equivalent formalism.
The integrable nonlinear evolution equations appear as the leading order approximation
in this perturbative approach. Corrections to this first approximation are often to be
considered. At a given propagation time (or distance), more accuracy can obviously be
obtained by retaining more than the main term only in the power series. Such additional
terms are the “higher order terms”. On the other hand, for a very long propagation
time, the physical solution goes away from the theoretical soliton because the nonlinear
evolution equation gives only a first order approximation of this evolution. Corrections to
the equation must be taken into account. The partial differential equations giving such
corrections are what we call the “higher order” ones.

Consideration of such corrections have given rise to perturbation theories for solitons [6]
that have found applications, e.g. in the frame of the physics of optical solitons in fibres,
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which are related to optical telecommunications [4]. The effect of the higher order equa-
tions appears in these theories notably through the renormalization of the soliton velocity.
From the purely theoretical point of view, it has been recently shown that the solvability
of the higher order equations can in some sense be related to the problem of the complete
integrability of the basic system [7, 10]. Furthermore, a physical interpretation of the
equations of the Korteweg-de Vries (KdV) hierarchy has been found by Kraenkel, Manna
and Pereira in the framework of the theory of water waves [11, 12, 13].

The Korteweg-de Vries (KdV) equation, which is known to describe the propagation of
long waves in shallow water [9], is the first equation that was solved by the IST method [3,
14]. More physically speaking, the first observed soliton was a long wave in shallow water.
The KdV equation appears as the evolution equation satisfied by the dominant term of the
quantity describing the wave in some multiscale expansion. We investigate in this paper
the higher orders terms of such an expansion. Our results apply a priori to the Maxwell–
Landau model that describes electromagnetic wave propagation in ferromagnetic media,
but, because they do not involve the explicit computations particular to this situation
(written down elsewhere [16]), they are presented in a general abstract frame. The results
are thus expected to apply to other physical situations. The conditions under which the
KdV model can be derived in this general frame are discussed below from both the physical
and the mathematical points of view. Regarding the higher order equations such conditions
cannot be written down explicitly in a completely satisfactory way from the mathematical
point of view, but their physical meaning is clarified. Further it has been proved [16]
that these conditions are satisfied by the Maxwell–Landau model which describes wave
propagation in ferromagnets.

We use, as did Kraenkel et al, a multiple time formalism. These authors have shown
that the evolution of the dominant term relative to the higher order time variables is
governed by the KdV hierarchy. Kodama and Taniuti showed that the evolution of the
higher order terms relative to the first time variable is governed by the linearized KdV
equation, but the way in which the higher order terms depend on the higher order time
variables was not yet clarified and it was not proven that the higher order terms do not
produce secular terms, while the coherence of the multiscale expansion necessitates the
elimination of any secularities. We find that the evolution of these terms can be described
by means of some linearized KdV hierarchy. This is the main result of the paper and
enables us to prove that no unbounded term does appear in the expansion.

The paper is organized as follows. In Section 2 we describe the frame of the multiscale
expansion, derive the KdV equation and discuss the physical hypotheses that allow this
derivation. In Section 3 the problem of secularities is presented and the introduction of the
KdV hierarchy allows us both to remove the secularity producing terms due to the main
order and to determine the evolution of the latter relative to the higher order variables.
Section 4 is devoted to the higher order time evolution of the higher order terms and to
the linearized KdV hierarchy. Section 5 contains a conclusion. The linear part of the right
hand member of the equations of the perturbative expansion plays an important role in
the treatment of the secularity producing terms. Therefore the corresponding coefficients
are computed explicitly in an appendix.
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2 A multiscale expansion

2.1 The model and the scaling

We consider some set of partial differential equations that can be written as

(∂t +A∂x + E)u = B(u, u), (2.1)

where the function u of the variables x and t is valued in R
p, A and E are some p × p

matrices, and B : R
p × R

p → R
p is bilinear. This system can describe the propagation of

electromagnetic waves in a ferromagnetic medium, according to the Maxwell and Landau
equations [16]. We consider the abstract system (2.1) rather than this latter particular
situation for sake of simplicity. Indeed the study of a specific case would imply explicit
computation of all the quantities involved by the multiscale expansion and increase consi-
derably the size of the expressions, while the matter of the present paper does not depend
upon the particular form of these quantities. It is in fact rather general, according to
the fact that KdV solitons arise in many other physical frames. Considering an abstract
frame thus avoids much computational detail, but in fact is not so easy because the deriva-
tion of the KdV model is not always achievable. It involves several assumptions, some
of which are rather strong. These assumptions are introduced at the points where they
have to be used. Then in subsection 2.3 we give their physical interpretation. In any case
the required assumptions are satisfied by the Maxwell–Landau model, describing waves
in ferromagnets. The proof of this is given in [16]. Thus the results of the paper are
valid and completely justified for this latter model. The use of the abstract system (2.1)
presents the two following advantages. Firstly it simplifies the algebra because it avoids
considering many details peculiar to the physics of ferromagnets. Secondly it allows a dis-
cussion of the physical conditions required for the occurrence of KdV solitons, despite
some feature concerning the higher order equations that cannot be completely solved from
the mathematical point of view.

Regarding the system (2.1) the following assumptions are usually made: A is assumed
either to be completely hyperbolic or symmetric and E is assumed to be skewsymmetric.
The two latter hypotheses are closely related to the conservative character of the system
and are satisfied by the Maxwell–Landau system under the scalar product((


E, 
H, 
M
) ∣∣( 
E, 
H, 
M

))
= 
E2 + 
H2 + α 
M2

(with the notations of [16]). Note that this scalar product depends upon the zero-order
term. Only weaker assumptions are necessary for the formal derivation of the KdV equa-
tion, as we will see below. However, some essential symmetry property of the higher order
equations is satisfied only when the system is conservative. This is ensured, regarding the
linear part of the system, by the symmetry and skewsymmetry hypotheses above. The
corresponding assumption on the nonlinear part cannot be expressed in a simple way.

The variable u is expanded in a power series of some small parameter ε as

u = ε2u2 + ε3u3 + · · · , (2.2)

and the slow variables

ξ = ε(x− V t), τ = ε3t (2.3)
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are introduced. V is a speed to be determined. This multiscale expansion is well-known.
It yields the Korteweg-de Vries (KdV) equation at leading order, ε2, in many physical
cases. Starting the expansion at order ε2 corresponds physically to specifying a low value
for the order of magnitude of the amplitude. Setting a term of order ε in expansion (2.2)
is a priori possible, but it is easily checked that it does not yield any evolution equation
regarding the chosen time scales. Therefore we can omit it. It is seen below that, as
is described in [8, 13], secularities, i.e. linear growth of the solutions with time, appear
in the higher order terms. These secularities must be removed and this is achieved by
imposing to the leading term some particular dependency with regard to higher order
time variables (the equations of the KdV hierarchy). Therefore we introduce the variables
τ2, τ3, . . . which are defined by

τj = ε2j+1t (j � 1). (2.4)

With this notation τ = τ1.

2.2 The Korteweg-de Vries equation

At order ε2 equation (2.1) yields

Eu2 = 0. (2.5)

Thus u2 belongs to the kernel, ker(E), of E. We assume that the range, Rg(E), of E is
in direct sum with its kernel (hypothesis 1). This is satisfied if E is skewsymmetric. We
also denote by Π0 and Q0 respectively the projectors onto ker(E) parallel to Rg(E) and
onto Rg(E) parallel to ker(E). Equation (2.5) can be written as

u2 = Π0u2. (2.6)

At the following order, ε3, we get the equation

Eu3 + (A− V )∂ξu2 = 0. (2.7)

The projection of equation (2.7) on ker(E) is

Π0(A− V )∂ξu2 = 0. (2.8)

Because of (2.6), equation (2.8) has a nonzero solution if V is an eigenvalue of Π0AΠ0.
We assume that V is a simple nonzero eigenvalue of Π0AΠ0, and call a0 an eigenvec-
tor, Π1 and Q1 the associated projectors: Π1 the projector on a0R, Q1 the projector on
Rg (Π0(A− V )Π0), so that Π1 + Q1 = Π0. This definition assumes that R

p is the direct
sum of the range and the kernel of Π0(A−V )Π0. This implies that not only the eigenspace
but the characteristic space of the operator Π0AΠ0 relative to the eigenvalue V has di-
mension 1 (hypothesis 2). The assumption of the complete hyperbolicity of A ensures
that this hypothesis is satisfied. When A is assumed to be symmetric, the dimensions of
characteristic and eigenspace are the same.

According to equation (2.8) ∂ξu2 ∈ ker (Π0(A− V )Π0). Thus u2 = a0ϕ2, where the
function ϕ2 has to be determined. The Q0-projection of equation (2.7) is

Q0u3 = a1∂ξϕ2. (2.9)



Higher Order Terms in Multiscale Expansions: A Linearized KdV Hierarchy 329

The vector coefficient a1 is defined by a1 = −E−1(A−V )a0, where E−1 is a partial inverse
of E. E−1 is precisely defined as follows. We call Ê the restriction and corestriction of
Q0EQ0 to Rg(E): Ê is invertible. We denote by 0̂ the zero operator defined on ker(E).
Then E−1 is the direct sum of 0̂ and Ê−1. In other words, the part of the matrices of E
and E−1 corresponding to Rg(E) are inverses one of each other and the matrix of E−1 is
completed by zeros to make a p× p matrix.

The equation of order ε4 is

Eu4 + (A− V )∂ξu3 = B(u2, u2). (2.10)

It is divided into 3 parts by using the projectors Q0, Q1, Π1. The Π1-projection is a com-
patibility condition for ϕ2. Using Π1(A−V )Π0 = 0, and splitting u3 into u3 = Π0u3+Q0u3,
we find that the projection reduces to

q∂2
ξϕ2 = rϕ2

2, (2.11)

with q = Π1(A − V )a1 and r = Π1B(a0, a0). If (q, r) �= (0, 0), equation (2.11) has no
bounded nonzero solution. The following conditions must thus be satisfied (hypotheses 3
and 4), viz

Π1B(a0, a0) = 0, and Π1(A− V )a1 = 0. (2.12)

TheQ1- and then theQ0-projection of equation (2.10) yield expressions forQ1u3 andQ0u4,
respectively, as

Q1u3 = a′1∂ξϕ2 + α1

∫ ξ

ϕ2
2, (2.13)

Q0u4 = a1∂ξϕ3 + a2∂
2
ξϕ2 + α2ϕ2

2. (2.14)

Denoting by (A − V )−1 a partial inverse of Π0(A − V )Π0 defined in an way analogous
to E−1, we define the vector coefficients by

a′1 = −(A− V )−1Q1(A− V )a1, (2.15)

α1 = (A− V )−1Q1B(a0, a0), (2.16)

a2 = −E−1Q0(A− V )
(
a1 + a′1

)
, (2.17)

α2 = E−1Q0 (B(a0, a0)− (A− V )α1) . (2.18)

With the use of all previous results the compatibility condition (Π1-projection) of the
equation of order ε5 yields the following evolution equation for ϕ2:

∂τϕ2 + βϕ2∂ξϕ2 + γ∂3
ξϕ2 = δϕ2

∫ ξ

ϕ2
2. (2.19)

The scalar coefficients β, γ, δ are defined by

a0β = 2Π1(A− V )α2 − 2Π1B(a0, a1 + a′1), (2.20)
a0γ = Π1(A− V )a2, (2.21)
a0δ = 2Π1B(a0, α1). (2.22)
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If the additional condition (hypothesis 5)

Π1B(a0, α1) = 0 (2.23)

is satisfied, equation (2.19) reduces to the KdV equation

∂τϕ2 + βϕ2∂ξϕ2 + γ∂3
ξϕ2 = 0. (2.24)

2.3 Physical meaning of the hypotheses

The above formal derivation of the KdV equation necessitates 5 hypotheses that have been
written down explicitly. Two of them, hypotheses 3 and 5, involve the nonlinearity, the
three other the derivatives only. A physical interpretation of the latter can be found in
the dispersion relation of the linearized system

(∂t +A∂x + E)u = 0. (2.25)

The pulsation and polarization vector corresponding to a given wave vector, k, are denoted
by ω(k) and u(k) respectively. They satisfy

(−iω(k) +Aik + E)u(k) = 0. (2.26)

The long wave approximation corresponds to k = 0 and ω(0) = 0. Then equation (2.26)
reduces to E u(0) = 0. It is equation (2.5). Taking the derivative of equation (2.26) with
regard to k and then setting k = 0 we obtain

i[A− ω′(0)]u(0) + E u′(0) = 0. (2.27)

The prime denotes the derivative with regard to k. Together with the interpretation of
the long wave approximation as a limit of oscillating waves for k close to 0, the analogy
between equation (2.27) and equation (2.7) allows the identification between u(0) and a0

on one hand, and between ω′(0) and V on the other. V appears as a long-wave limit of
the group velocity. Hypothesis 2 is thus that a unique polarization can propagate with
this velocity. If this assumption is not satisfied, interactions between the various waves
with same velocity must be taken into account.

Equation (2.27) yields also

Q0u
′(0) = −E−1i[A− V ]a0. (2.28)

Thus Q0u
′(0) = ia1, with the definition above of a1. Taking once again the derivative of

equation (2.26) with regard to k we obtain, for k = 0,

−iω′′(0)a0 + 2i[A− V ]u′(0) + E u′′(0) = 0. (2.29)

Taking the Π1-projection of equation (2.29), decomposing u′(0) into u′(0) = ia1+Π0u
′(0),

and taking into account the relation Π1(A− V )Π0 = 0, we get

ω′′(0)a0 = 2iΠ1[A− V ]a1. (2.30)
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Hypothesis 5, in (2.12), is thus

d2ω

dk2
(0) = 0.

The following feature can be observed: ω′′′(0) can be computed by the same method, using
the second derivative of equation (2.26). The expression obtained gives an interpretation
of the coefficient γ of the third derivative in the KdV equation, (2.19), as

γ =
−1
6

d3ω

dk3
(0). (2.31)

Hypothesis 1 appears mainly as a technical assumption without special physical mean-
ing needed to solve equation (2.28). If E is skewsymmetric, this hypothesis is satisfied.
Assume that E has a nonzero symmetrical part Es. Taking the scalar product of equation
(2.26) by u(k), then comparing the result to its complex conjugate and making use of the
symmetry assumptions (A being symmetric), we obtain the following expression for the
imaginary part ωi(k) of ω(k): ωi(k) = −(u|Esu)/(u|u). Thus the system cannot be con-
servative if E is not skew-symmetric, and hypothesis 1 is always satisfied by conservative
systems.

The two hypotheses 3 and 5 concerning the nonlinearity obviously cannot be understood
through the study of the linearized equation (2.25). Hypothesis 3 can be written as

Π1B(Π1,Π1) = 0, (2.32)

while the assumption

Π1B(Π1, Q1) = 0 (2.33)

implies hypothesis 5. Conditions (2.32) and (2.33) are particular expressions of a very
general condition called the “transparency” condition in the rigorous mathematical the-
ory of multiscale expansions by Joly, Métivier and Rausch [5]. Condition (2.32) excludes
quadratic self-interaction for the chosen propagation mode, while condition (2.33) ex-
cludes interaction at the same order for different polarizations. If condition (2.32), that
is hypothesis 3, is not satisfied, the nonlinear term appears sooner in the expansion. The
nonlinear evolution of the wave will be described by a nonlinear evolution equation other
than the KdV equation and for other space, amplitude and time scales. If condition (2.33),
or more precisely hypothesis 5, is not satisfied, the above computation is valid, but the
evolution equation is equation (2.19) instead of KdV. It is an integro-differential equation
involving a cubic nonlinear term.

2.4 The linearized KdV equation

Regarding the higher order terms, the evolution equation relative to the first order time
τ = τ1 is found in the following way. Equation (2.1), written for some given order εn,
yields a compatibility condition, its Π1-projection

Π1(A− V )∂ξQ0un−1 +
∑
j�1

∂τjΠ1un−2j−1 =
n−2∑
p=2

Π1B(up, un−p), (2.34)
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and recurrence formulas for the determined parts of un, its Q0-projection

Q0un = E−1Q0


−(A− V )∂ξun−1 −

∑
j�1

∂τjun−2j−1 +
n−2∑
p=2

B(up, un−p)


 , (2.35)

and its Q1-projection

Q1un = (A− V )−1Q1

×

−(A− V )Q0un −

∑
j�1

∫ ξ

∂τjun−2j +
n−1∑
p=2

∫ ξ

B(up, un+1−p)


 . (2.36)

The component of un belonging to Rg(Π1) is proportional to some unknown real func-
tion ϕn, and un is

un = a0ϕn +Q0un +Q1un. (2.37)

We call Sp the set of expressions involving u2, u3, . . . , up, but not up+1 and subsequent
terms. The same notation Sp will hold below for any function belonging to this set. Due
to equations (2.35) and (2.36) un can be written as

un = a0ϕn + Sn−1. (2.38)

The functions ϕn are the unknowns of the problem. Note that, with these notations, Sp is
the set of expressions involving ϕ2, ϕ3, . . . , ϕp and their derivatives. Applying two times
the recurrence formulas (2.35) and (2.36) onto the expression (2.38) of un we obtain

un = a0ϕn +Q0un +Q1un, (2.39)

with

Q0un = a1∂ξϕn−1 + a2∂
2
ξϕn−2 + 2α2ϕ2ϕn−2 + Sn−3, (2.40)

Q1un = a′1∂ξϕn−1 + 2α1

∫ ξ

ϕ2ϕn−1 + Sn−2. (2.41)

Equations (2.39)–(2.41) are correct if n − 2 > 2, i.e. n � 5. For n = 4, the coefficient 2
before α2 vanishes, as seen above. The dependency of Q1un with regard to ϕn−2 is not
needed in the computation of the higher order equations below. This is fortunate because
of several integral nonlinear terms arising in it that would greatly hinder the computa-
tion. When use is made of the expressions (2.39) to (2.41) of un in the compatibility
condition (2.34), it gives an evolution equation for ϕn−3. Indeed, un does not appear in
the equation. The dependency with regard to ϕn−1, ϕn−2 and ϕn−3 is explicitly written.
Because of the condition Π1(A−V )a = 0, which determines the velocity V , ϕn−1 vanishes
from the equation. Because of the relations (2.12) and (2.23) that are satisfied under the
present hypotheses, ϕn−2 and a term δϕ2

(∫ ξ
ϕ2ϕn−3 + ϕn−3

∫ ξ
ϕ2

2
)
also vanish and the

equation obtained is, with n− 3 = l:

∂τ1ϕl + β∂ξ (ϕ2ϕl) + γ∂3
ξϕl = Ξl (ϕ2, . . . , ϕl−1) . (2.42)
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Equation (2.42) is the linearized KdV equation obtained by the linearization of the KdV
equation (2.24) about its solution ϕ2 with an additional right hand member Ξl(ϕ2, . . . ,
ϕl−1) depending on the previously determined terms.

This is true with no further hypothesis than the existence of some simple eigenvalue V
of Π0(A − V )Π0 and conditions (2.12) and (2.23). However, in the general case, due to
the term

∫ ξ
B(up, un+1−p) in the recurrence formula (2.36), the right hand member Ξl

involves a priori many integrations relative to the variable ξ. The property

Q1B(·, ·) ≡ 0, (2.43)

satisfied in ferromagnets, ensures their vanishing.

3 The second order time evolution and the KdV hierarchy

3.1 The problem of the secularities

It is well known that the KdV equation (2.24) is completely integrable, i.e. that the
Cauchy problem for it can be solved by use of the Inverse Scattering Transform (IST)
method [1, 3, 14]. The IST method gives also explicit formulas for the resolution of the
linearized KdV equation (2.42) [8, 15]. This latter equation is linear, but it is necessary to
solve it by this method, because the solution ϕ2 of the KdV equation intervenes in it as an
essential parameter. In the general case ϕ2 can be only expressed in terms of its inverse
transform, thus also the solution of the linearized KdV equation (2.42). Unfortunately
the solution computed this way is not always bounded (I mean uniformly bounded in ξ
as τ → +∞). As an example, assume that at τ = 0, ϕl ≡ 0, and replace the right hand
member Ξl (ϕ2, . . . , ϕl−1) by ∂ξϕ2. Then the solution ϕl of equation (2.42) is [8, 15]

ϕl = τ∂ξϕ2. (3.1)

A solution like (3.1) is called “secular”. This phenomenon occurs when a term in the right
hand member “resonates”, that is, from the mathematical point of view, is a solution of
the homogeneous equation ((2.42) with Ξl (ϕ2, . . . , ϕl−1) = 0). Physically, this resonance
phenomenon occurs when each component of the inverse scattering transform of the source
term (some part of the right hand member Ξl (ϕ2, ϕ3, . . . , ϕl−1) ) evolves in time in the
same way as the corresponding component in the transform of the main term. In order
to remove the secular terms, we use the method of Kraenkel, Manna, and Pereira [12, 13]
that consists in the introduction of additional evolution equations, which describe the
evolution of the main term relative to the higher order time variables τ2, τ3, . . . . We
check that, according to the papers cited, these equations must be those of the so-called
KdV hierarchy, normalized in order to cancel the linear terms in the right hand member
Ξl (ϕ2, ϕ3, . . . , ϕl−1). Indeed references [8, 13] state that the secularity producing terms
are the linear ones. We showed in [15] that they are rather the derivatives of the conserved
densities of the KdV equation, and that the procedure of Kraenkel et al. in fact removes
completely these latter terms from the right hand member.

3.2 The next order equation

The standard expansion used to derive the KdV equation in hydrodynamics has some
parity relative to ε. As an example, Su [17] uses series expansions in integer powers of
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some perturbative parameter ε, defined in such a way that ε = ε2, ε being the perturbative
parameter of the present paper. This corresponds to a vanishing of all odd terms in the
present expansion. The equation (2.42) governing the τ1 evolution of ϕn is obtained at
order εn+3, which is even when n is odd. Due to the homogeneity properties of the
expansion, the right hand member Ξn (ϕ2, . . . , ϕn−1) contains only even order derivatives
of ϕ2, which describe losses. Physically, if the initial system (2.1) is conservative, the
same feature can be expected for any equation in the expansion. Therefore the even order
derivatives of ϕ2 must vanish. We assume that the present model has the same property
in the following sense: Ξ3 (ϕ2) = 0. Thus, with a zero initial condition, ϕ3 ≡ 0, and so
on: if all ϕp with odd p are zero up to (n − 2), n being odd, then Ξn (ϕ2, . . . , ϕn−1) is
zero and, with a zero initial condition, ϕn is also zero. Thus, if the corresponding initial
conditions are zero, all the Ξn and all the ϕn with odd values of the integer n are zero.
This occurs in the particular case in which the system (2.1) describes wave propagation
in a ferromagnetic medium. This last feature is proved, using homogeneity properties,
in [16]. Few results can be proved on this point in the general case. The right hand
member Ξ3 (ϕ2) contains a term K∂4

ξϕ2, where the coefficient K is given by

a0K = Π1(A− V )E−1Q0(A− V )
(
1− (A− V )−1Q1(A− V )

)
a2. (3.2)

In the same way as the expression (2.30) for ω′′ has been derived, we can give an expres-
sion for ω(4) = d4ω/dk4

∣∣
k=0

. After comparison with (3.2), it is seen that ω(4) = 24iK.
Observe that the right hand member of (3.2) contains only real terms. Thus K is real and
ω(4) is purely imaginary. The requirement that the linear term K∂4

ξϕ2 in Ξ3 (ϕ2) vanish
is equivalent to the requirement that ω(4) be real, which must be satisfied if the system is
conservative. This generalizes to the higher even order derivatives and ensures the vanish-
ing of the linear terms, but we omit the proof because we must admit the generalization
of this feature to the nonlinear terms. Note that only the linear terms are suspected to
be secularity producing. Thus the vanishing of the linear term is expected to ensure that
all terms in the expansion are bounded. Nonetheless, we make the assumption above,
because it is satisfied in all the examples of which we know, even if we are not able to
prove it in the general case.

With this hypothesis the second nontrivial equation of the perturbative expansion is
the equation (2.42) for ϕ4. Its right hand member Ξ4 (ϕ2) is polynomial with regard to ϕ2

and its derivatives, with the homogeneity of the terms of order ε7 in the expansion and
can thus be expanded according to formula (A.16) as

Ξ4 (ϕ2) =
∑

(mj)j�1, k�0∑
j�1 2jmj+k=5

Ξ ((mj)j�1, k)
∏
j�1

(∫ ξ

−∞
∂τj

)mj

∂k
ξϕ2 +O2. (3.3)

(O2 designates here an expression in ϕ2 without linear terms.) The indices (mj)j�1, k in
this sum can take the values

((mj)j�1, k) = ((0, . . . ), 5); ((1, 0, . . . ), 3); ((2, 0, . . . ), 1); ((0, 1, 0, . . . ), 1) (3.4)

only. Furthermore, the coefficient Ξ ((0, 1, 0, . . . ), 1) of ∂τ2ϕ2 is −1. Thus expression (3.3)
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can be expanded in the following way:

Ξ4 (ϕ2) = −∂τ2ϕ2 + Ξ((2, 0, . . . ), 1)
(∫ ξ

−∞
∂τ1

)2

∂ξϕ2

+ Ξ((1, 0, . . . ), 3)
(∫ ξ

−∞
∂τ1

)
∂3

ξϕ2 + Ξ((0, . . . ), 5) ∂5
ξϕ2 +O2. (3.5)

As ϕ2 satisfies the KdV equation (2.24), we have

∫ ξ

−∞
∂τ1ϕ2 = −γ∂2

ξϕ2 +O2. (3.6)

Thus

Ξ4 (ϕ2) = −∂τ2ϕ2 − γ2∂
5
ξϕ2 +O2, (3.7)

with

−γ2 = Ξ((2, 0, . . . ), 1) (−γ)2 + Ξ((1, 0, . . . ), 3) (−γ) + Ξ ((0, . . . ), 5) . (3.8)

The coefficient γ2 is explicitly computed in the Appendix (equation (A.19)).

3.3 The KdV hierarchy

The linear terms computed above are secularity producing. Because the solution ϕ4 of
the linearized KdV equation must be bounded, they must vanish. This imposes some
evolution equation for ϕ2 relative to the second-order time variable τ2, such that

∂τ2ϕ2 = −γ2∂
5
ξϕ2 +O2. (3.9)

The nonlinear terms in equation (3.9) are not free, but imposed by the compatibility con-
ditions between the KdV equation (2.24) and (3.9): the Schwartz conditions ∂τ1∂τ2ϕ2 =
∂τ2∂τ1ϕ2. Kraenkel, Manna, and Pereira [13] have shown that the only equation that has
the same homogeneity properties as Ξ4 and that satisfies this condition is the second equa-
tion of the so-called KdV hierarchy. The same requirements are found at higher orders.
The KdV hierarchy is the following set of equations [2]:

∂Tnv = ∂XLnv (n integer), (3.10)

where

L =
−1
4
∂2

X − v +
1
2

∫ X

dX(∂Xv). (3.11)

For n = 1 it is the KdV equation, but with values of the coefficients β = 3/2, γ = 1/4.
The coefficients become equal to those of equation (2.24) by setting

v =
β

6γ
ϕ2, X = ξ and T1 = 4γτ1. (3.12)
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For n = 2 the equation (3.10) of the hierarchy is

∂T2v =
1
16

∂5
Xv +

5
4
(∂Xv)∂2

Xv +
5
8
v∂3

Xv +
15
8
v2∂Xv. (3.13)

The important feature is the existence of the Hirota τ -function [2], that is a function of
all the variables (X,T1, T2, . . . ), related to v by

v(X,T1, T2, . . . ) = 2∂2
X ln τ(X,T1, T2, . . . ) (3.14)

(take care to avoid confusion between the Hirota τ -function and the time variables τj). The
existence of τ insures that a solution v of the whole system yielded by all equations of the
hierarchy exists. As the system admits a solution, the Schwartz conditions are satisfied
at any order, i.e. ∂Tj∂Tpv = ∂Tp∂Tjv for any j, p � 1. Furthermore these conditions
are satisfied formally and identically by the equations themselves and not only for some
particular solution. The authors cited have checked by formal computation on the first
orders that, apart from the symmetries of the KdV hierarchy, it is the only compatible
system which has the required homogeneity properties and for which the first equation
is the KdV one. The symmetries of the hierarchy are, after those of the KdV equation,
a free scaling coefficient for each time variable. We must identify

T2 = −16γ2τ2 (3.15)

with γ2 given by equation (3.8) and impose that ϕ2 satisfy the evolution equation

−1
16γ2

∂τ2ϕ2 = ∂ξL2ϕ2 (3.16)

with

L =
−1
4
∂2

ξ − β

6γ
ϕ2 +

β

12γ

∫ ξ

−∞
dξ(∂ξϕ2). (3.17)

Then Ξ4 (ϕ2) no longer contains any linear term. This implies, due to the procedure, that
it no longer contains any secularity producing term [15].

The linear terms in ϕ2 are removed in the same way at each order. We impose for each
p � 2 that

−1
(−4)pγp

∂τpϕ2 = ∂ξLpϕ2, (3.18)

(L as above) with γp defined by γ1 = γ and

γp+1 =
∑

(mj)1�j�p−1, k�0∑p−1
j=1 2jmj+k=2p+3

Ξ ((mj)1�j�p−1, k)
p−1∏
j=1

(−γj)mj . (3.19)

For p = 1 equation (3.18) coincides with equation (2.24) with β1 = β. We use here the
same scheme as in the first case p = 2. We have

Lp =
(−1

4
∂2

ξ

)p

+O1. (3.20)
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Equation (3.18) gives

∂τpϕ2 = −γp∂
2p+1
ξ ϕ2 +O2. (3.21)

Then the linear term in ϕ2 vanishes from Ξp (ϕ2, ϕ4, . . . , ϕp−2). In this way all secularity
producing terms due to ϕ2 vanish at any order.

4 The third order and the linearized KdV hierarchy

4.1 The higher order time evolution of the higher order terms

The third equation of our perturbation expansion is equation (2.42), written for l = 6,
with its right hand member Ξ6 (ϕ2, ϕ4) given by formula (A.16). It is of order ε9. It
involves not only ϕ2, ϕ4 and their space derivatives but also ∂τ1ϕ2, ∂τ2ϕ2, ∂τ3ϕ2, ∂τ1ϕ4

and ∂τ2ϕ4 of orders ε5, ε7, ε9, ε7 and ε9 respectively. ∂τ1ϕ2 is replaced by space derivatives
and nonlinear terms using the KdV equation (2.24). We make use of the second and third
equations of the hierarchy for ϕ2 so that ∂τ2ϕ2 and ∂τ3ϕ2 also vanish, replaced by functions
of the space derivatives. The right hand member becomes

Ξ6 (ϕ2, ϕ4) = ∂τ2ϕ4 + Ξ((2, 0, . . . ), 1)
(∫ ξ

−∞
∂τ1

)2

∂ξϕ4

+ Ξ((1, 0, . . . ), 3)
(∫ ξ

−∞
∂τ1

)
∂3

ξϕ4 + Ξ((0, . . . ), 5) ∂5
ξϕ4 +O2. (4.1)

(Here O2 represents some expression in ϕ2, ϕ4, their derivatives and primitives, without
linear terms). The τ1-evolution of ϕ4 is also known, and described by the linearized KdV
equation (2.42), with the right hand member Ξ4 (ϕ2). Using this relation removes the
explicit dependency on ∂τ1ϕ4, and the right hand member Ξ6 (ϕ2, ϕ4) reduces to

Ξ6 (ϕ2, ϕ4) = ∂τ2ϕ4 + γ2∂
5
ξϕ4 +O2. (4.2)

Two questions arise at this point:

• How is the τ2-dependency of ϕ4 defined?

• Is the right hand member Ξ6 (ϕ2, ϕ4) secularity producing due to the terms in ϕ4,
in particular the linear ones?

ϕ4 is the solution of the linearized KdV equation (2.42), with the right hand mem-
ber Ξ4 (ϕ2) and some given initial data ϕ4(ξ, τ1 = 0). It is expressed as an integral and
linear combination of the squared Jost functions, defined in the solution of the KdV equa-
tion through the IST method [8, 15]. We denote by ϕ

(1)
4 the solution of the homogeneous

linearized KdV equation with the same initial data ϕ
(1)
4 (ξ, τ1 = 0) ≡ ϕ4(ξ, τ1 = 0), and

by ϕ
(2)
4 the solution of the linearized KdV equation with the right hand member Ξ4 (ϕ2)

and vanishing initial data ϕ
(2)
4 (ξ, τ1 = 0) ≡ 0, so that ϕ4 = ϕ

(1)
4 + ϕ

(2)
4 . It is shown in [15]

that ϕ(1)
4 is secularity producing while ϕ

(2)
4 is not.

Since the τ2-dependency of the solution ϕ2 of KdV is determined, the squared Jost
functions are also known for all (ξ, τ1, τ2), and so are the spectral components of the right
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hand member Ξ4 (ϕ2). Thus ϕ
(2)
4 is completely determined and its τ2-dependency is well

defined without additional condition. Furthermore the evolution equation that makes
explicit this dependency is not needed for the computation of the function ϕ4(ξ, τ1, τ2).
The situation is different with ϕ

(1)
4 , while the initial condition is a priori free. In the

previous subsection we saw that the compatibility conditions fixed the τ2-dependency
of ϕ2, apart from a scaling coefficient for this time variable. The τ2-dependency of ϕ(1)

4 is
determined below in the same way, but the scaling coefficients are no longer free.

Consider some solution v0 of the KdV equation, and v1 of the homogeneous linearized
KdV equation. We use here the normalization of formulas (3.10)–(3.11). The latter
equation is

∂T1v1 +
3
2
∂X(v0v1) +

1
4
∂3

Xv1 = 0. (4.3)

We assume also that v0 and v1 are smooth functions of all the variables X,T1, T2, . . . , and
that their dependency relative to each time variable satisfies the homogeneity properties
of the KdV hierarchy. We saw above that under these conditions the function v0, solution
of the KdV equation, satisfies the complete hierarchy, with some scaling constant for each
time variable. Consider some small parameter η. The function

v = v0 + ηv1 (4.4)

satisfies the KdV equation apart from a term of order η2. Thus it satisfies the whole
hierarchy (still apart from terms of order η2). By linearization of the nth equation of the
hierarchy (3.10), we find that

∂Tnv1 = ∂XDnv1, (4.5)

with

Dnv1 =
(
d1Ln−1 + Ld1Ln−2 + · · ·+ Ln−1d1

)
v0 + Lnv1 (4.6)

and

d1 =
dL
dv

(v1) = −v1 +
1
2

∫ X

dX(∂Xv1). (4.7)

This result is in particular valid for v1 = ϕ
(1)
4 , but also for the following orders v1 = ϕ

(1)
p ,

with analogous notations, for any even p � 4. While the higher order time evolution
of the part ϕ

(2)
4 of the term of order ε4 coming from the right hand member Ξ4 (ϕ2)

of the linearized KdV equation is defined by the main order itself, the evolution of the
part ϕ

(1)
4 coming from the initial data is determined in an analogous way as the main

term: ϕ(1)
4 satisfies the linearized KdV hierarchy (4.5).

Formal identities are related to this feature. They are found by the following reasoning.
We assume as previously that v1 satisfies the homogeneous KdV equation. We have seen
that v1 must satisfy equations (4.5). The existence of v1 as a function of all the variables
X,T1, T2, . . . is not in doubt, because it is ensured by the existence of the Hirota τ -func-
tion [2]. Thus we have

∂Tn∂Tjv1 = ∂Tj∂Tnv1 (4.8)
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for any integers n and j. We denote by (∂TnDj) the Tn-partial derivative of Dj which de-
pends on Tn through v, and by ∂TnDj the operator that applies successively Dj and ∂Tn .
With analogous notation, ∂XDj ≡ (∂XDj) +Dj∂X . With the use of equation (4.5) equa-
tion (4.8) becomes

((∂TnDj) +Dj∂XDn) v1 =
(
(∂TjDn) +Dn∂XDj

)
v1. (4.9)

As in the case of the KdV hierarchy itself (nonlinearized), equation (4.9) is valid for any
function v1. Thus the following identity holds formally:

(∂TnDj) +Dj∂XDn = (∂TjDn) +Dn∂XDj . (4.10)

This identity can also be written as[
∂Tj − ∂XDj , ∂Tn − ∂XDn

]
= 0, (4.11)

where [M,N ] = MN − NM denotes the commutator of the operators M and N , and
the Schwartz conditions

[
∂Tj , ∂Tn

]
= 0 are assumed. The commutator in equation (4.11)

is easily computed and vanishes due to the Schwartz condition and to the formal iden-
tity (4.10).

Using the scaling definition for v0 and T1, T2, . . . , we can write down the equations of
the linearized KdV hierarchy for the functions ϕ(1)

p as

∂τnϕ
(1)
p + (−4)nγn∂ξDnϕ

(1)
p = 0, (4.12)

with Dn defined by (4.6)–(4.7). In the case that n = 2 and p = 4 this equation has the
explicit form

∂τ2ϕ
(1)
4 = −γ2∂

5
ξϕ

(1)
4

− 5
3
βγ2

γ

[
ϕ2∂

3
ξϕ

(1)
4 + 2 (∂ξϕ2) ∂2

ξϕ
(1)
4 + 2

(
∂2

ξϕ2

)
∂ξϕ

(1)
4 +

(
∂3

ξϕ2

)
ϕ

(1)
4

]

− 5
6
β2γ2

γ2

[
ϕ2

2∂ξϕ
(1)
4 + 2ϕ2 (∂ξϕ2)ϕ

(1)
4

]
. (4.13)

4.2 All secular terms vanish

The function ϕ
(1)
4 is secularity producing [15]. The following term ϕ6 would thus be secular

if ϕ(1)
4 appears in Ξ6 (ϕ4, ϕ2). Equation (4.13) yields

∂τ2ϕ
(1)
4 = −γ2∂

5
ξϕ

(1)
4 +O2. (4.14)

Together with equation (4.2), this allows one to compute the linear part of the right hand
member to obtain

Ξ6 (ϕ4, ϕ2) = −∂τ2ϕ
(2)
4 − γ2∂

5
ξϕ

(2)
4 +O2. (4.15)

We admit that the only secularity producing terms due to ϕ
(1)
4 are the linear ones and

recall that ϕ
(2)
4 is not secularity producing. Thus, due to the equation of the linearized
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KdV hierarchy (4.13), all secularity producing terms vanish from the right hand member
Ξ6 (ϕ4, ϕ2) and ϕ6 is bounded.

In order to justify the same property at any order, we have to compute the linear terms
in ϕp that appear in the expression of Ξn (ϕ2, . . . , ϕn−2). The computation of all linear
terms in these right hand members is detailed in the Appendix. The general expression
of the linear part of Ξn is

Ξn (ϕ2, . . . , ϕn−2)

=
∑

(mj)j�1, k�0, p�2∑
j�1 2jmj+k+p=n+3

Ξ ((mj)j�1, k)
∏
j�1

(∫ ξ

−∞
∂τj

)mj

∂k
ξϕp +R. (4.16)

The remainder R contains nonlinear terms in ϕp, as well as terms in ϕj , j �= p. From
equation (4.12) of the linearized KdV hierarchy we see that

∂τjϕ
(1)
p = −γj∂

2j+1
ξ ϕ(1)

p +O2. (4.17)

Thus

Ξn (ϕ2, . . . , ϕn−2)

=
∑

(mj)j�1, k�0∑
j�1 2jmj+k+p=n+3

Ξ ((mj)j�1, k)
∏
j�1

(−γj)
mj ∂

(
∑

j�1 2jmj+k)
ξ ϕ(1)

p +R′. (4.18)

The remainder R′ contains nonlinear terms, terms in ϕj , j �= p, and in the part ϕ
(2)
p

of ϕp that comes from the right hand member Ξp (ϕ2, . . . , ϕp−2). These latter terms
are not secularity producing. Using the fact that, in the sum in (4.18), mj = 0 for
j > s = (n+ 3− p− 1) /2, and expression (3.19) of γj , we find that Ξn (ϕ2, . . . , ϕn−2)
reduces to R′. This result is valid for each p, thus Ξn (ϕ2, . . . , ϕn−2) does not contain any
secularity producing term and ϕn is not secular.

4.3 The higher order time derivatives

On the other hand the expression of the solution ϕ4 of the linearized KdV equation
involves its spectral transform and an explicit computation of its τ2-derivative seems quite
impossible. However, it is needed for the explicit computation of the right hand member
Ξ6 (ϕ2, ϕ4). ∂τ2ϕ

(1)
4 is directly given by equation (4.13). We now seek an analogous

expression of ∂τ2ϕ
(2)
4 . With the use of the definitions of this section, the linearized KdV

equation (2.42) can be written as

(∂τ1 + 4γ∂ξD1)ϕ
(2)
4 = Ξ4 (ϕ2) . (4.19)

We apply the operator (∂τ2 − 16γ2∂ξD2) to both sides of this equation and make use of
identity (4.11), to obtain

(∂τ1 + 4γ∂ξD1) (∂τ2 − 16γ2∂ξD2)ϕ
(2)
4 = (∂τ2 − 16γ2∂ξD2) Ξ4 (ϕ2) . (4.20)
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(∂τ1 + 4γ∂ξD1) is the operator on the left hand side of the linearized KdV equation that
admits a unique solution for a given initial data. ϕ

(2)
4 is defined in such a way that it

vanishes at τ1 = 0 for any ξ and τ2. Thus its ξ and τ2 derivatives also vanish and

(∂τ2 − 16γ2∂ξD2)ϕ
(2)
4

∣∣∣
τ1=0

≡ 0. (4.21)

We use the following notation to denote this solution:

(∂τ2 − 16γ2∂ξD2)ϕ
(2)
4 = (∂τ1 + 4γ∂ξD1)

−1 [(∂τ2 − 16γ2∂ξD2) Ξ4 (ϕ2)] . (4.22)

∂τ2Ξ4 (ϕ2) is easily computed while the expression of Ξ4 is explicitly known through the
perturbative expansion and ∂τ2ϕ2 is determined by the second equation of the hierar-
chy (3.16). It is

∂τ2Ξ4 (ϕ2) = −16γ2
dΞ4 (ϕ2)

dϕ2
∂ξL2ϕ2, (4.23)

where dΞ4 (ϕ2)/dϕ2 is the differential operator obtained by linearization of Ξ4 (ϕ2) about
ϕ2 . ∂τ2ϕ4 is thus given by the formula

∂τ2ϕ
(2)
4 = 16γ2

(
∂ξD2ϕ

(2)
4 − (∂τ1 + 4γ∂ξD1)

−1

×
[
dΞ4 (ϕ2)

dϕ2
∂ξL2ϕ2 + ∂ξD2Ξ4 (ϕ2)

])
. (4.24)

More generally ϕ
(2)
p is the solution of the linearized KdV equation with the right hand

member Ξp (ϕ2, . . . , ϕp−2) and zero initial data and

(∂τ1 + 4γ∂ξD1) (∂τn − (−4)nγn∂ξDn)ϕ(2)
p

= (∂τn − (−4)nγn∂ξDn) Ξp (ϕ2, . . . , ϕp−2) . (4.25)

Because, for n �= 1, (∂τn − (−4)nγn∂ξDn) does not contain the partial derivative ∂τ1 ,

(∂τn − (−4)nγn∂ξDn)ϕ
(2)
p

∣∣∣
τ1=0

≡ 0. Using the above notations we obtain the following

expression of the higher order time derivative:

∂τnϕ
(2)
p = (−4)nγn∂ξDnϕ

(2)
p + (∂τ1 + 4γ∂ξD1)

−1

×
[

p−2∑
2l=2

dΞp (ϕ2, . . . , ϕp−2)
dϕ2l

∂τnϕ2l − (−4)nγn∂ξDnΞp (ϕ2, . . . , ϕp−2)

]
. (4.26)

For p = 4 the time derivatives in the right hand member of equation (4.26) reduce to
∂τnϕ2 = −(−4)nγn∂ξLnϕ2, according to equation (3.18). For larger values of p, it involves
∂τnϕ2l with 2l � 4 that divides into ∂τnϕ2l = ∂τnϕ

(1)
2l + ∂τnϕ

(2)
2l , where ∂τnϕ

(1)
2l is given by

the linearized KdV hierarchy (4.12), and ∂τnϕ
(2)
2l by the same equation (4.26), in a recurrent

way.
We have proved that the introduction of the KdV hierarchy removes all unbounded or

secular solutions from the perturbative expansion and given the expression of the higher
order time derivatives of all terms in the perturbative expansion.
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5 Conclusion

We have studied the higher order terms in the perturbative expansion that describes
KdV solitons in a rather general frame, including electromagnetic wave propagation in
ferromagnetic media. Using various mathematical techniques, we have been able to write
down the equations satisfied by the quantities of any order in this expansion. In every case
it is the linearized KdV equation, with some right hand member. We have summarized
the known results about this equation. Unbounded or secular solutions can be removed
by suppressing linear terms in the right hand member of the equations. This is done by
imposing that the main term satisfy all equations of the KdV hierarchy. There exist scaling
coefficients for the higher order time variables in the hierarchy, which are determined by
the requirement that the linear terms in the right hand member of the linearized KdV
equation vanish. They are computed using explicit recurrence formulas. Furthermore the
behaviour of the higher order terms relative to the higher order time variables was not
known. These terms are divided into two parts: one part comes from the initial data, and
its higher order time evolution is described by the linearized KdV hierarchy. The other
part comes from the right hand member of the linearized KdV equation that describes its
evolution relative to the main time scale. It is completely determined, including its higher
order time evolution, by this latter equation.

A quasi-explicit formula for the higher order time derivatives of this second part of the
corrective terms has also been given. It involves also the expression of the linearized KdV
hierarchy. The main result is that none of the higher order terms produces any secularity.
Thus the existence of the expansion is established up to any order.
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A Appendix. Computation of the linear terms
in the right hand member of the equations
of the perturbative expansion

The right hand member Ξl (ϕ2, ϕ3, . . . , ϕl−1) of the linearized KdV equation (2.42) is
defined by

a0Ξl (ϕ2, ϕ3, . . . , ϕl−1) = Π1Eq(l+3) + a0

(
∂τ1ϕl + β∂ξ(ϕ2ϕl) + γ∂3

ξϕl

)
(A.1)
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for each l � 3, with

Eq(n) = −Eun − (A− V )∂ξun−1 −
∑
j�1

∂τjun−2j−1 +
n−2∑
p=2

B(up, un−p), (A.2)

so that the nth equation (2.34)–(2.36) of the perturbative scheme is Eq(n) = 0 (Eq(n) is
the difference of the right hand member minus the left hand member). We write O2 for
any polynomial expression in the ϕj and their derivatives and primitives that does not
contain any linear term. This is analogous to the usual Landau notation O(ϕ2

j ), except
that we do not assume that the ϕj are small in any way. Note that the use of the KdV
equation satisfied by ϕ2, and so on could change the linear terms in Ξl (ϕ2, ϕ3, . . . , ϕl−1).
Thus in order to define the linear part of Ξl (ϕ2, ϕ3, . . . , ϕl−1) in a unique way, we assume
that no use of these properties has been done. We made the standard hypothesis that,
for zero initial conditions at these orders, all ϕj with an odd value of j are zero, but
it is more convenient for the present formal computation to forget this feature. Formal
first order terms, vector u1 and function ϕ1, satisfying equations (2.34) and (2.35) are
introduced, although it can be shown that they are necessary zero. This is consistent with
the requirement that no use of the equations has been made: we compute formally the
right hand member without solving the equations in any way.

We write an a priori formula for the linear part of un:

un =
∑

m̄=((mj)j�1,k,l)
mj , k�0, l�1, d(m̄)=n

ũ (m̄)
∏
j�1

(∫ ξ

∂τj

)mj

∂k
ξϕl +O2, (A.3)

where the components of the vector coefficients ũ(m̄) have to be determined. The homo-
geneity properties of un are described by the “degree” d(m̄), defined by

d ((mj)j�1, k, l) =


∑

j�1

2j mj


 + k + l. (A.4)

No explicit dependency on n has to be written down because n = d(m̄). The substitution of
formula (A.3) into the recurrence formulas (2.35) and (2.36) for un yields a new recurrence
formula that allows one to compute these coefficients. This shows by induction that
formula (A.3) is valid for any value of the integer n and that the values found for the
coefficients are valid. These recurrence formulas are

For all l � 1: ũ ((0), 0, l) = a0 (A.5)
For all k and l � 1: ũ ((0), k, l) = F1(ũ((0), k − 1, l)). (A.6)

For all (mj)j�1 �= (0) and l � 1,

ũ ((mj)j�1, 0, l) =
∑
i�1

F3(ũ ((mj − δi,j)j�1, 0, l)). (A.7)
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For all (mj)j�1 �= (0), k, l � 0,

ũ ((mj)j�1, k, l) = F1(ũ((mj)j�1, k − 1, l))

+
∑
i�1

[F2(ũ ((mj − δi,j)j�1, k − 1, l)) + F3(ũ((mj − δi,j)j�1, k, l))] . (A.8)

δi,j is the Kronecker symbol and the operators Fj are defined by

F1 = F2(A− V ), (A.9)

F2 = − [
1− (A− V )−1Q1(A− V )

]
E−1Q0, (A.10)

F3 = −(A− V )−1Q1. (A.11)

Formulas (A.5) to (A.8) define ũ ((mj)j�1, k, l)). We see that this quantity does not
depend upon l. We write more simply ũ ((mj)j�1, k)) in the following. For some particular
terms explicit expressions can be given. It is straightforwardly seen from equations (A.6)
and (A.5) that, for all k,

ũ((0), k) = F1
ka0. (A.12)

In the particular case that k = 1 this is

ũ ((0), 1)) = a1 + a′1. (A.13)

Equations (A.7) and (A.5) yield in a similar way

ũ((mj)j�1, 0) = F3

∑
j�1 mja0. (A.14)

The definition of a0 shows that Q1a0 = 0. Thus F3a0 is zero and ũ((mj)j�1, 0) = 0 for all
(mj)j�1. In the same way, due to Q0a0 = 0, F2a0 = 0.

The formulas obtained are substituted into the definition (A.2) of Ξl to give

Π1Eq(n) = −
∑

(mj)j�1, k �0 ,l �1

d(m̄)=n−1

Π1(A− V )Q0ũ(m̄)
∏
j�1

(∫ ξ

−∞
∂τj

)mj

∂k+1
ξ ϕl

−
∑
i�1

∑
(mj)j�1, k �0 ,l �1

d(m̄)=n−2i−1

Π1ũ(m̄)
∏
j�1

(∫ ξ

−∞
∂τj

)mj+δi,j

∂k+1
ξ ϕl +O2. (A.15)

Thus the right hand member Ξn is

Ξn (ϕ2, ϕ3, . . . ϕn−1)

=
∑

(mj)j�1, k�0

1�l �n−1∑
j�1 2jmj+k+l=n+3

Ξ ((mj)j�1, k)
∏
j�1

(∫ ξ

−∞
∂τj

)mj

∂k
ξϕl +O2, (A.16)
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with

a0Ξ ((mj)j�1, k) = −Π1(A− V )Q0ũ ((mj)j�1, k − 1)

−
∑
i�1

Π1ũ ((mj − δi,j)j�1, k − 1) , (A.17)

where ũ((mj)j�1, k) is defined by the recurrence formulas (A.5) to (A.8). Note the re-
markable feature that the coefficient Ξ ((mj)j�1, k) does not depend on n.

The term in which ∂τjϕl appears with the largest value of the index j, in a given Ξn,
can be computed explicitly. Because n is necessary even, we write n = 2p. Due to the
homogeneity properties of Ξn (ϕ1, . . . ) we see that the term sought is proportional to ∂τpϕ2.
The corresponding coefficient is Ξ ((δj,p), 1). By direct application of the previous formulas,
we find that

Ξ ((δj,p), 1) = −1. (A.18)

The coefficient γ2 that defines the second order time scale τ2 is computed using the ex-
pansion (3.8) and the above recurrence formulas. It is

γ2a0 = Π1

[−γF1 + (A− V )Q0

(
F1

3 − γ [F1F3 + F3F1 + F2]
)]

F1a0. (A.19)
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