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Abstract

We compare the use of artificial neural networks and
(Gaussian processes for forecasting. We show that Ar-
tificial Neural Networks have the advantage of being
utilisable with greater volumes of data but Gaussian
processes can more easily be utilised to deal with non-
stationarity.

1 Introduction

Artificial neural networks [?] perform general pur-
pose non-parametric regression and are modelled on
an abstraction of real neural networks. They are su-
pervised learning machines i.e. they require a set of
training data on which an answer has previously been
given. With respect to forecasting, we typically train
on historical data and attempt to predict the future
using what has been learned about the past.

A stochastic process Y (x) is a collection of random
variables indexed by x € X such that values at any
finite subset of X form a consistent distribution. A
Gaussian Process {GP) therefore is a stochastic pro-
cess on a function space which is totally specified by
its mean and covariance function [?, 7, 7].

In this paper, we Investigate the use of these two
technologies in the context of forecasting airline pas-
senger growth. Since neural networks are well known
in the literature, we do notl. review them but do pro-
vide a short introeduction to Gaussian Processes in
the next section.

2 (Gaussian Processes

Consider a stochastic process which defines a distri-
bution, P(f), over functions, f, where f maps some
input space, y to R. Ife.g. ¥ =R, fis infinite dimen-
sional but the x values index the function, f(x), at a
countable number of points and so we use the data at
these points to determine P(f) in function space. If
P(f) is multivariate Gaussian for every finite subset
of X, the process is a GP and is then determined by
a mean function #{x) and covariance function ®(x}.
These are often defined by hyperparameters, express-
ing our prior beliefs on the nature of # and ¥, whose
values are learned from the data.

A commonly used covariance function is X : X;; =
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5w ) + 02d;; which enforces smoothing
via the | parameter. The ¢, parameter determines
the magnitude of the covariances and &,, enables
the model to explain the data, ¥ = f(x) + n, with
n ~ N(0,02). Most commonly, we assume zero mean
Gaussian procesges, #(x) = 0. We use the training
data to estimate the parameters of the model. Let
~ be a generic parameter of the covariance matrix,
».. Then we use the standard method of gradient de-
scent on the log likelihood with #(x) as the target for
training,
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Then we use the trained GP to predict new values,
fo = f(x,) for test inputs, x, using the fact that the
combined distribution of all values is jointly Gaussian
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which leads to the predictive equations

K(X,X)+02] K(X,X.)
K(X,,X) K(X,,X.)

f.|X,y,X, ~ N(f,,cov(f.), where
f. = E{f.|X,y,X.)
= KX, XK, X) + 021ty (2)
covif,) = K(X,, X.)
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3 Simulations
It is well-known [?] that the scalar product kernel

(3)

can model non-stationary data. However this linear
kernel only gives a linear response, but if the covari-
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ance matrix includes a trend aspect and also a local
aspect which can create non-parametric regressions,
we my model the type of data in which we are inter-
ested, as shown below. This is possible since the sum
of two kernels (in this case the squared exponential
and the linear) iz itself a valid kernel.

Therefore to predict data such as that of Figure
77, we use a covariance matrix of the form

(x; — Xj)
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and have the parameters learned in order to best
model the data. This means that we have to find
the optimal ¢, parameter for which we use
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Where (Tz)ij = X?Xj.
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Figure 1. The actual and predicted unemployment
on the test samples.

3.1 Unemployment Data

From [?], we have a set of 60 quarters’ unemploy-
ment data from the USA which exhibits seasonal as
well as non-stationary aspects. We use this data set
to illustrate an investigation into the use of different
covarlance functions.

We have found 1t necessary to have the ¢, term
learn much more slowly than the other terms, other-
wise the data is totally explained by the noise. How-
ever, when we do have a lower rate for the noise we
find that the o, term (which corresponds to the scalar
product part of the covariance matrix) takes a value
of 0.9, g, takes a value of 0.8 but &, takes a value of
0: the data is best explained by a trend term (see be-
low) and the noise term. Predictions from this model
on the last 12 quarters (not seen in training) are given
in Figure 7?7. However when we train a GP with a
covariance matrix only having a squared exponential
term, we find it equally well explains the data but
there is now a substantial noise term.

3.2 Monthly Airline Passengers

The monthly total number of UK air passengers from
1949 to 1999 (612 samples) is shown in Figure 77
(this data set iz also taken from [?]). The seasonal
cycle Is clear as is the upward trend in the number of
passengers.

We create 12 dimensional inputs from 12 consec-
utive samples of the univariate airline data and ai-
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Figure 2: The total number of air passengers in the

UK each month from 1949 te 1999,

tempt to predict the 13th sample. We use the tech-
nologies on the first 100 samples - 63 for training
and 25 for testing; we will discuss why we use such a
small sample later. We firstly use a multilayered per-
ceptron (mlp) with the same data without using any
pre-processing l.e. 1n particular not de-trending the
data. In Figure 77, we show the results of two sim-
ulations the first with 20 hidden neurons, the second
with 100 (which gave our best result with this data
set!). In each case, we trained for 300000 iterations
with a learning rate which decreased arithmetically
from 0.01 to O during the course of the simulation.
We see that the general shape of the prediction is
correct but there is a distinct bias - the mlp is unable
to respond automatically to the trend in the data
and so we would have to use a pre-processing step
which removes the trend. The MAPE for the latter
experiment was 9.9%.

For the Gaussian Processes, the standard covari-
ance matrix given in Section 2 does not work very
well with this data: it captures the periodic nature
of the data but Is unable to respond to the upward
trend and so gives cycles of the correct period but
only with the average amplitude. Therefore we use
the covariance function which can handle the upward

1We experimented with the mumber of hidden neurons vary-
ing between 2 and 200
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Figure 3: The multilayered perceptron is unable to
identify the trend term in the data. Left: 20 hidden
neurons. Right:100 hidden neurons.
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Figure 4: The red ".”s are the actual values of the
test data, the black "* s are the predicted values.

trend in the data and get the result shown in Fig-
ure ?7?7. The MAPE is 3.83 on this sample. However
there is a problem with this type of data set with the
575 samples: the covarlance matrix becomes very ill-
conditioned due to the scalar product influence l.e.
the very feature which enables it to respond to the
trend acts against accurate results on the whole data
setf.

It is worth recording that the trend aspect of
this seems to be more difficult to model than the
periodic. For example, [?] note an example from
MacKay in which the one dimensional input vari-
able z is decomposed into a two dimensional variable
u(z) = (cos(z),sin(z)) and the squared exponential
function gives

{cosz, — cos :e:g)2 + (sinz; — sinxg)2

to model a non-stationary time series but one with
a cyclical component. The artificial neural network
trained using the backpropagation algorithm was not
able to model this data. However, we used only a
small subset of the training data. This is because the
computational requirements for Gaussian processes
are much greater than those for artificial neural net-
works: the neural network could easily be trained on
all the data at once. The Gaussian process has an-
other important feature - it can handle missing data
more readily than the neural network. We do not
believe that Gaussian processes will supplant neu-
ral networks (or any other non-parametric regressors)
but see them as an additional tool in the data ana-
lyst’s kit bag.
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