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Abstract—In this paper, we study a dynamic inventory control 
and pricing optimization problem in a periodic review 
inventory system with fixed ordering cost and price adjustment 
cost. At the same time, the ordering quantity is limited. We 
show that the optimal inventory control is partially 
characterized by an (s, s', p) policy in four regions, and the 
optimal pricing policy is dependent on the inventory level after 
the replenishment decision. 
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I.  INTRODUCTION 

In this article, we consider a dynamic inventory control 
and pricing optimization problem in a periodic review 
inventory system with fixed ordering cost and price 
adjustment cost. At the same time, the ordering quantity is 
limited.  

This problem is related to the optimal control of a single 
product system with finite capacity and setup cost. Several 
studies have been conducted on this problem. For instance, 
Chen and Lambrecht (1996) point out the generally known 
result is that the optimal policy can only be partially 
characterized in the form of X-Y bands. When the inventory 
level is below the first band X, then produce/order the 
capacity, and when the inventory level is over the second 
band Y, produce/order nothing. If the inventory level is 
between the two bands, the ordering policy is complicated 
and depends on the instance. In Gallego and Scheller-Wolf 
(2000), the structure of the policy between the bands is 
further refined using two numbers s and s' in four possible 
regions. However, none of they have studied the pricing 
problem in the inventory control problem. Only Chao, Yang 
and Xu (2012) have studied a dynamic inventory and pricing 
optimization problem in a periodic review inventory system 
with setup cost and finite ordering capacity in each period. 
They show that the optimal inventory control is characterized 
by an (s,s',p) policy in four regions of the starting inventory 
level. But in their paper, the selling price can be adjusted 
without any cost. 

In the reality, there must be some price adjustment cost 
when the price is changed.  In the economics literature, there 
are two major types of price adjustment costs identified: 
managerial costs and physical costs. Rotemberg (1982), 
Levy et al. (1997), Slade and G.R.E.Q.A.M (1998), 
Aguirregabiria  (1999), Bergen et al. (2003), Zbaracki et al. 
(2004) have shown both the two styles of costs are 

significant in retailing and other industries. According to 
these empirical studies, Chen, Zhou and Chen (2011) 
consider a periodic-review inventory model with price 
adjustment costs that consist of both fixed and variable 
components. They develop the general model and 
characterize the optimal policies for two special scenarios, a 
model with inventory carryover and no fixed price-change 
costs and a model with fixed price-change costs and no 
inventory carryover. Although there is price adjustment cost, 
they do not consider the finite ordering capacity. 

In this paper, we consider a random additive demand 
model and investigate the structure of the optimal inventory 
control and pricing policy in each period.  We show that the 
optimal inventory policy is partially characterized by an (s, s', 
p) policy on four regions, in two of these regions the optimal 
policy is completely specified while in the other two, it is 
partially specified. More specifically, the optimal ordering 
quantity in the first region is the full capacity, while in the 
last region it is optimal to order nothing; in the two middle 
regions, the optimal decision is either to order to the 
maximum capacity, to order to at least a pre-specified level s', 
or to order nothing. The optimal pricing policy p(y) in each 
period is dependent on the inventory level after the 
replenishment decision, y, which is in general not a 
monotone function.  The key concept utilized is strong CK-
concavity, which is an extension of K-concavity, and was 
first introduced by Gallego and Scheller-Wolf (2000). The 
result is similar with the one in Chao, Yang and Xu (2012). 

The rest of this paper is organized as follows. In the next 
section we present the model. The main result and the proofs 
are provided in Section 3, and concluding remarks are in 
Section 4.  

II. MODEL 

Consider a periodic review inventory system with price-
dependent random demand in each period. There are N 
periods, with the first period being 1, and last period N. The 

demand in period n, ( )n nD p , depends on the selling price 

in period n, np . Here we consider the additive demand 

(Petruzzi and Dada (1999), Chen and Simchi-Levi (2004)). 
That is, the demand in period n is 

( ) ( )n n n n nD p d p ε= + , 
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where the selling price in period n is np , n=1, ……, N. nε  

is a random variable with mean zero and ( )n nd p  is the 

average demand which is a decreasing function of 
np . The 

selling price np  for period n is a decision variable, taken 

from interval [ , ]p p . Thus, as the selling price increases 

from p to p , the average demand decreases from ( )d p  to 

( )d p . Let ( )d d p=  and  ( )d d p= .This shows that 

determining the selling price np  is equivalent to setting the 

average demand 
nd , and we can simply optimize over the 

average demand 
nd between d  and d . Let ( )n n np p d=  be 

the inverse function of  ( )n nd p , which is also decreasing 

function. Suppose ( )n np d  is linear on 
nd . Then the expected 

revenue when setting the average demand to 
nd  is 

( ) ( )n n n n nr d d p d= ⋅ , 

which is a concave function. The ordering leadtime is 
zero, that is, an order placed at the beginning of a period is 
received at the end of the period after demand is realized.  

We assume that the government gives the product a guide 
price

0p . The actual selling price 
np  should be no larger 

than 0p , which indicates 0np p p≤ ≤ . The cost of a price 

adjustment from the actual selling price to guide price in 
period n is denoted by 

0( )n nU p p− . It is commonly assumed 

that the variable cost is increases with the size of the price 
change, because the decision and internal communication 
costs are higher for larger price changes. Several forms of 

( )nU ⋅ have been used in the economics literature, including 

piece wise linear functions and quadratic functions. Here we 
assume that ( )nU ⋅  is linear. Due to the linearity of 

decreasing function ( )n np d , it is easy to show 
0( )n nU p p−  is 

linear and increases on 
nd . For convenience, let 

0( ( )) ( )n n n n nU p p d U d− = . 

The sequence of events during a period is as follows: 1) 
inventory level is reviewed and replenishment order is placed, 
2) replenishment order arrives, 3) a selling price is set, 4) 
random demand is realized, and 5) all costs are computed. 

We assume the fixed ordering cost is K, and the variable 
unit ordering cost is c in period n. There is a finite ordering 
capacity C for each period. That is, the ordering quantity for 
each period cannot exceed C. Unsatisfied demand in a period 
is fully backlogged. Let 

nx  be the inventory level at the 

beginning of period n before placing an order, which can be 
positive or negative because we consider backlog model, and 
let 

ny  be the inventory level after placing the order. Due to 

ordering capacity, we must have 

n n nx y x C≤ ≤ +  

 A cost ( )h x  is incurred at the end of period n if the 
inventory level after demand realization is x, which 
represents inventory holding cost if 0x ≥  and shortage cost 
if 0x < . 

For convenience we let 

( ) [ ( )]nG y E h y ε= − . 

Then, the period-n expected holding and shortage cost, 

given that the inventory level after replenishment is ny  and 

the expected demand for period n is 
nd , is ( )nG y d− .   

Denote by ( )nv x  the profit-to-go function at the 

beginning of time period n with inventory level x. Let 

1( ) 0Nv x+ =  for all x. Hence, for each n=1, ……, N, we have 

{
}

{
}

1

( ) max max 1[ ] ( )

                ( ) ( ) [ ( )]

        max   1[ ]

                           max{ ( ) ( ) ( )} ,

n nx y x C d d d

n n n

x y x C

n n nd d d

v x cx K y x r d cy

U d G y d E v y d

cx K y x cy

r d U d W y d

α ε
≤ ≤ + ≤ ≤

+

≤ ≤ +

≤ ≤

= + − > + −

− − − + − −

= + − > −

+ − + −

where  

1( ) ( ) [ ( )]n n nW y G y E v yα ε+= − + −  

1[ ]A  is the indicate function, taking value 1 if statement A is 
true and zero otherwise. α is the one-period discount factor, 

[0,1]α ∈ .  

The objective is to characterize the optimal ordering and 
pricing strategy that maximizes the total expected discounted 
profit over the planning horizon. 

III. ANALYSIS AND RESULTS 

Before analysis, it is necessary for us to introduce an 
important definition.  

Definition: Given non-negative constants C and K, we call 
the function G strong CK-concave if for all y, 0 a≤ < ∞ , 
0 b< < ∞ , [0, ]z C∀ ∈ , 

{ }( ) ( ) ( ) ( )
zK G y z G y G y a G y a b
b

− + + ≤ + − − − −

. 

According to Gallego and Scheller-Wolf (2000), we can 
obtain some propositions about strong CK-concave: 

Proposition: 1. If G is strong CK-concave, it is also strong 
DL-concave for any 0 D C≤ ≤  and L K≥ . 
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2. If G is concave, it is strong CK-concave for any 
nonnegative C and K. 

3. If G1 is strong CK-concave, and G2 is strong CL-concave, 

then for α , 0β ≥ , 1 2G Gα β+  is strong 

( )C K Lα β+ -concave. 

4. If G is strong CK-concave and X is a random variable such 

that [ ( ) ]E G y X− < ∞ , then [ ( )]E G y X−  is strong 

CK-concave. 

Given non-negative C and K and strong CK-concave 
functions ( , ( ))n ng x d x  for any 1, ,n N=  , let: 

nS  be the point at which the function 

( , ( ))n ng x d x reaches its maximum at period n, 

1, ,n N=  ; 

ns  be the minimum point at which no order is required 

by the optimal policy at period n,  1, ,n N=  ; 

ns′  be the maximum point at which it is necessary to 

order some units for the optimal policy at period n and 

n ns S′ ≤ , 1, ,n N=   

Clearly n n ns s S′−∞ ≤ ≤ ≤ . 

Lemma 1. 1. ( , ( ))n ng x d x  is non-decreasing on ( , ]ns′−∞  

and strictly increasing on ( , )ns−∞ . 

2.              ( , ( )) max ( , ( ))   n n n n nx y x C
g x d x g y d y K x s

≤ ≤ +
′≥ − ∀ >  

3. If  n ns C s′ − ≤ , 

( ) ( , ( )) ,   n n n n nv x g x C d x C c x K x s C′= + + + − < −  

( ) max ( , ( )) ,   
n

n n n n n ns y x C
v x g y d y c x K s C x s

′ ≤ ≤ +
′= + − − ≤ <  

( ) max{ ( , ( )) ,

                   max ( , ( )) },   
n

n n n n

n n n n ns y x C

v x g x d x c x
g y d y c x K s x s

′ ≤ ≤ +

= +
′+ − ≤ ≤

 

( ) ( , ( )) ,   n n n n nv x g x d x c x x s′= + >  

If  n ns C s′ − > , 

( ) ( , ( )) ,   n n n n nv x g x C d x C c x K x s= + + + − <  

( ) max{ ( , ( )) ,

            ( , ( )) },   
n n n n

n n n n n

v x g x d x c x
g x C d x C c x K s x s C

= +
′+ + + − ≤ ≤ −

 

( ) max{ ( , ( )) ,

            max ( , ( )) },   
n

n n n n

n n n n ns y x C

v x g x d x c x
g y d y c x K s C x s

′ ≤ ≤ +

= +
′ ′+ − − ≤ ≤

 

( ) ( , ( )) ,   n n n n nv x g x d x c x x s′= + >  

      The following result follows from the concavity of r and 
linearity of U, which can be proved using supermodularity. 

Lemma 2. Suppose that ( , )ng y d  is jointly continuous in 

(y,d). Then, there exists a ( )nd y  which maximizes ( , )ng y d  

for any given y, such that ( )ny d y−   is a non-decreasing 

function of y. 

      According to Lemma 2 and Chao, Yang and Xu (2012), 
we can prove Lemma 3, which is essential in proving the  
main result of this paper.  

Lemma 3. If Wn(y) is strongly CK-concave, then so is 

( ) max{ ( ) ( ) ( )}.n n nd d d
g y r d U d W y d

≤ ≤
= − + −  

      The following theorem characterizes the structure of the 
optimal inventory and pricing policy for each period. 

Theorem 1. Suppose x is the starting inventory level at the 
beginning of period n. The optimal inventory and pricing 
strategy is characterized by two numbers ns  and ns′  and by 

the optimal pricing *( )np y , such that n ns s′≤  and *( )np y  

depends on the post-order inventory position y. If 

n ns C s′ − ≤ , then  the optimal ordering policy is 

i)  order capacity C  if nx s C′< − ; 

ii)  order at least up to ns′  if n ns C x s′ − ≤ < ; 

iii) either order nothing or order at least up up to ns′   if 

n ns x s′≤ ≤ ; and 

iv) order nothing  if nx s′> . 

And if n ns C s′ − > , then  the optimal ordering policy is 

i') order capacity C  if nx s< ; 

ii') either order nothing or order C  if n ns x s C′≤ ≤ − ; 

iii') either order nothing or order at least up to ns′   if 

n ns C x s′ ′− ≤ ≤ ; and 

iv')  order nothing  if nx s′> . 

Proof of Theorem 1. We prove by induction that ( )nV ⋅  is 

strongly CK-concave. This is clearly true for n=N+1 as 

1( ) 0NV x+ = . Suppose it has been established for n+1 and we 

proceed to prove n. 
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It follows from the property of strong CK-concavity that 

1[ ( )]n nE V yα ε+ −  is strongly ( )C Kα -concave, and by the 

concavity of ( )nG y−  we obtain that ( )nW y  is strongly 

( )C Kα -concave, hence it is also strongly CK-concave. By 
Lemma 3 we obtain that 

( ) max{ ( ) ( ) ( )}.n n n nd d d
H y cy r d U d W y d

≤ ≤
= − + − + −  

is strongly CK -concave. Define ns ,  ns′  and nS   by 

inf{ | sup ( ) ( )},n n n
x y x C

s x K H y H x
≤ ≤ +

= − + ≤  

max{ | sup ( ) ( )},n n n
x y x C

s x K H y H x
≤ ≤ +

′ = − + ≥  

inf{ | ( ) sup ( )}.n n
y

S y H y H y
∈ℜ

= ∈ℜ =  

Then, clearly n ns s′≤ , and it can be shown similar to the 

argument in Gallego and Scheller-Wolf (2000) that, the 
optimal inventory strategy is determined by ns  and ns′  as 

described in the statement of Theorem 1 and that, by the 
strong CK-concavity of ( )nH y , ( )nv x  given by 

{ }( ) max 1[ ] ( )n nx y x C
v x cx K y x H y

≤ ≤ +
= + − > +  

preserves strong CK-concavity. 

The optimal pricing decision is determined by the 
maximizer in Lemma 2. Let 

*( ) arg max{ ( ) ( ) ( )},n n n nd d d
d y r d U d W y d

≤ ≤
= − + −  

resulting in a state-dependent optimal average selling 
quantity. Recall that ( )n n np p d=  is the inverse function of 

( )n n nd d p= . The optimal pricing decision, when the 

replenished inventory level is y, is 

* *( ) ( ( ))n n np y p d y= . 

This concludes the proof of Theorem 1. 

IV. CONCLUSION 

In this paper, we consider a dynamic inventory control 
and pricing optimization problem in a periodic review 
inventory system with fixed ordering cost and price 
adjustment cost. At the same time, the ordering quantity is 

limited. Here we assume that the guide price is larger than 
the actual selling price. And both the price function and price 
adjustment cost function are linear. In the future research, we 
will study the model with more complicate price adjustment 
cost.  
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