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Abstract-Research of enterprises’ financial distress prediction 
(FDP) can generate early warning signals before the outbreak 
of financial crisis, and how to build a relative simplicity and 
robust FDP model has been of concern for theorists and 
practitioners at home and abroad. This research introduces 
Kalman filtering theory into FDP modeling. It builds a process 
model and a measurement model to describe the dynamic 
financial system. It uses time update and measurement update 
algorithm to solve the problem of financial information 
filtering. And thus, an adaptive model is proposed which is 
proved effective by an empirical analysis. This research is 
expected to provide theoretical support to achieve an accurate 
FDP and promote the application of FDP state-space model for 
enterprises. 
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I. INTRODUCTION 

Research of enterprises’ financial distress prediction 
(FDP) can generate early warning signals before the 
outbreak of financial crisis, so it can provide guidance for 
enterprises’ financial risk precaution. Thus, it can 
effectively reduce the possibility of enterprises being 
trapped in financial difficulties due to the further 
deterioration of financial conditions. Theoretical and 
empirical research of dynamic modeling on FDP with 
longitudinal data streams from the view of individual 
enterprise has important practical and theoretical research 
value. 

Many great classification techniques have been 
suggested to predict financial distress. Early studies of 
financial distress prediction focus on statistical techniques, 
such as multiple discriminate approach, logistic regression 
(Logit), and prohibit regression (Probit). In recent years, 
artificial intelligence approaches and data mining 
techniques, such as neural network (NN), support vector 
machine (SVM), case-based reasoning (CBR), have been 
widely applied to enterprises’ financial distress prediction 
because of its universal approximation property and ability 
of extracting useful knowledge from vast data and domain 
experts, and also they don’t have restrictive assumptions 
like traditional statistical approaches, such as linearity, 
normality and independence of input variables, which limits 
the effectiveness and validity of prediction. Neural network 
(NN) is one of the most widely used promising tools and 
have shown better predicative capacity than statistical 
techniques such as multiple discriminate analysis, logistic 

regression. But NN is criticized by some scholars for “black 
box” property and over-fitting problems [1-2]. SVM solve 
local minima and over-fitting problems which are the main 
sources of trouble to conventional neural networks [3-5]. 
But the “black box” problem is still not solved. The basic 
problem is to determine the internal states of a system, 
given access only to the system’s outputs. Two systems 
having totally different internal structures may exhibit the 
same external characteristics. 

The many approaches to this basic problem are typically 
based on the state-space model. And this research aims to 
contribute to financial distress prediction by introducing a 
state-space model based on Kalman filtering theory.  

II. RESEARCH FOUNDATION AND THEORY 

The Kalman filter is named after Rudolph E. Kalman, 
who in 1960 published his famous paper describing a 
recursive solution to the discrete-data linear filtering 
problem (Kalman 1960). The Kalman filter is essentially a 
set of mathematical equations that implement a 
predictor-corrector type estimator that is optimal in the 
sense that it minimizes the estimated error covariance when 
some presumed conditions are met. Since the time of its 
introduction, the Kalman filter has been the subject of 
extensive research and application, particularly in the area 
of autonomous or assisted navigation. This is likely due in 
large part to advances in digital computing that made the 
use of the filter practical, but also to the relative simplicity 
and robust nature of the filter itself. Rarely do the 
conditions necessary for optimality actually exist, and yet 
the filter apparently works well for many applications in 
spite of this situation. 

There are two basic building blocks of a Kalman filter, 
the process model and the measurement model. In general, 
the process model is of the form 

11 −− Γ+Φ= ttt wxx             (1) 

The measurement model relates an unobserved variable 
xt to an observable variable yt, and the measurement model 
is of the form 

ttt vHxy +=              (2) 
nRx ∈  is the state of a discrete-time controlled process and 
mRy ∈  is a measurement. The random variables 

tw and 
tv  

represent the process and measurement noise respectively. 
They are assumed to be independent of each other, white, 
and with normal probability distributions, 
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i.e. ),0(~)( tt QNwp  and ),0(~)( tt RNvp . The n×n matrix Φ  

in the difference equation (1) relates the state at the 
previous time step t-1 to the state at the current step t, in the 
absence of either a driving function or process noise. Note 
that in practice Φ  might change with each time step, but 
here we assume it is constant. The n×l matrix Γ  relates the 
noise input to the state x. The m×n matrix H in the 
measurement equation (2) relates the state to the 
measurement yt. In practice H might change with each time 
step or measurement, but here we assume it is constant. 

The Kalman filter is actually a linear minimum variance 
estimation of a state. The Kalman filtering process involves 
two steps: time update and measurement update. 

Step 1: Time update. We predict a priori state estimate 
−

tx̂ and a priori estimate error covariance −
tP  in the case 

where the optimal estimate 
tx̂  is known in step t-1. 

1ˆˆ −
− Φ= tt xx              (3) 

11
1ˆ

−−
− +ΦΦ= t

T
tt QPP          (4) 

On this basis, the Kalman gain Kt, which is used to 
adjust the weighted difference between an actual 
measurement yt and a predicted measurement −

txHˆ ,  is 

obtained. 
1)( −−− += t

T
t

T
tt RHHPHPK      (5) 

Step 2: Measurement update. Correct the priori estimate 
based on the observation error and the principle of 
minimum variance. Then the optimal state estimate 

tx̂  and 

the optimal estimate error covariance Pt can be obtained. 
)ˆ(ˆˆ −− −+= ttttt xHyKxx       (6) 

−−= ttt PHKIP ][          (7) 

The Kalman filter estimates a process by using a form 
of feedback control: the filter estimates the process state at 
some time and then obtains feedback in the form of noisy 
measurements. As such, the equations for the Kalman filter 
fall into two groups: time update equations and 
measurement update equations. The time update equations 
are responsible for projecting forward in time the current 
state and error covariance estimates to obtain the a priori 
estimates for the next time step. The measurement update 
equations are responsible for the feedback, i.e. for 
incorporating a new measurement into the a priori estimate 
to obtain an improved a posteriori estimate. The time update 
equations can also be thought of as predictor equations, 
while the measurement update equations can be thought of 
as corrector equations. Indeed the final estimation algorithm 
resembles that of a predictor-corrector algorithm for solving 
numerical problems. 

III. FINANCIAL DISTRESS PREDICTION MODEL BASED ON 

KALMAN FILTERING THEORY 

Based on the above analysis, this reaearch selects 
enterprises’ financial data for continuous T years as object, 
and seizes the statistic characteristics of noise of 
enterprises’ financial systems, e.g. financial statement 

window-dressing. The filter is designed observed variables 
for continuous T years for enterprises as inputs, and 
financial status or estimated parameters as outputs. Errors 
are adjusted by time update and measurement update 
algorithm, and the parameters are corrected constantly. 
Then the optimal filtering equations can be obtained.  

The specific model is established as follows: ｛xt：t=1，
2，…｝stands for a sequence of the financial conditions for 
t years for a company; and ｛yt：t=1，2，…｝stands for a 
sequence of financial ratios for t years for this company. 
Assuming xt can not be observed，but related to yt, So 

ttt vBxy +=              (8) 

where, B is a parameter vector which can be estimated from 
the data; vt～N(0，Rt); Rt is a covariance matrix of the 
observation noise vt of the system, and Rt can be a 
time-independent vector. Among，yt, B and Rt are n×l 
dimensional vectors at time t, n is the number of 
generalized principal components from the original data. 
Equation (8) is measurement model. 

Process model is  

11 −− += ttt CwAxx          (9) 

where, A and C are both parameters; wt~N(0，Qt); Qt is a 
covariance matrix of the process noise wt of the system. In 
our research, xt is one-dimensional, but actually xt can be 
multi-dimensional. 

Then, we establish k-order prediction, i.e. )|( tktxp δ+ . 

Among, 
tδ  is the filtering; τy  is the generalized dynamic 

principal component get from processed historical data, and 
τ =1,2,…,t; k=1,2,…. 

tktX δ|+
 follows a normal 

distribution, and its mean and variance are: 

t
k

tkt xAxMean ˆˆ | == +        (10) 
Tk

tt
k

tkt APxAPVariance )(ˆ| == +
 

Tii
k

i
ACQCA )( 11

2

−−

=
Σ+      (11) 

where, superscript T stands for transpose; Pt is covariance 
matrix of Xt| tδ . 

To be updated once there is observation yt+1. 11 | ++ ttX δ  

also follows a normal distribution: 
1
11|111 ˆˆ −

+++++ +== t
T
tttttt FBPxAxMean          

)ˆ( 111 tttt xABy +++ −×         (12) 
T

tttt
T
tttttt PBFBPPPVariance |11

1
11|1|11 ++

−
+++++ −== (13) 

where, T
t

T
tt

T
ttttt CQCAPAP 11111|1 ++++++ += ; and also 

11|111 +++++ += t
T
ttttt HBPBF . 

Assuming equation (12) and (13) are both 
time-independent, the analysis can be further simplified. 

If it is can be confirmed that 
0x̂  and P0 are the optimal 

estimation on mean and variance of 
00 | yx =δ  at time t=0, 

then 
tx̂  and Pt can be obtained recursively. At time t=1, 

there is: 
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TT BCQCAAPBBCQCAAPxAx )(()(ˆˆ 0001 +−++=       

)ˆ() 01
1 xBAyH −×+ −                  (14) 

AAPCQCAAPP 001 (−+=  
TT BCQCAAPBBCQC )(() 0 ++   

)() 0 CQCAAPBH T +×+       (15) 

Similarly, 
2x̂  and P2 can be obtained from 

1̂x  and P1 

recursively. 
It is necessary to identify the parameters B, Q, and H 

making use of the historical financial data before predicting 
enterprises’ financial conditions in the application of 
state-space model. Maximum likelihood estimation method 
is chosen to estimate the relevant parameters. 

Considering whether the company is trapped in 
financial distress each year is the public information, part of 
x can be observed in the sample. So we put this part of 
observed information into the likelihood equation in order 
to improve the accuracy of the equation. Therefore the final 
likelihood equation is: 

t

M

t
F

NM
l lg

2

1
)2lg(

2 1=
Σ−−= π  

))((lg(
2

1
11

st

M

t
t

T
t

M

t
CXPFee >Σ+Σ−

==
 

)))(1())(lg()( tCXPt st λλ −×<+×    (16) 

Among, Cs is a threshold, 

 

 
Financial ratios in the modeling sample can form a 

three-dimensional database. We write M program with 
Matlab according to equation (8)-(16), and then parameters 
in this model can be estimated. In this reseach A，B，C，Q，

H，Cs are parameters. 
We conduct an empirical experiment using the data 

drawn from listed companies in China’s Shanghai and 
Shenzhen stock markets covering the period 2002-2011 to 
estimate values of the parameters based on the maximum 
likelihood rule. They are A=0.698; B=[-0.076, 0.699, 0.179, 
1.526]T; C=-0.026; Q=0.032; 

=

 1.142      0        0        0
0     0.090     0        0
0         0     0.023    0
0         0        0     0.141

 

 
After test, the accuracy of estimation on test set by the 

new model is 91.8%. 

IV. CONCLUSION 

In this paper, Kalman filtering theory is introduced into 
establishing a financial distress prediction model for 
enterprises. It establishes a link between the observable 
information and unobservable system state through the 

state-space model, which is easier to understand and 
promote than the NN and other methods. Another advantage 
of application of Kalman filtering method is that the 
problem of financial information filtering can be solved by 
the use of time update and measurement update algorithm, 
and therefore efficiency in the use of financial information 
can be improved. At last experimental results show that the 
new model based on Kalman filtering theory can 
significantly enhance the efficiency of financial distress 
prediction for enterprises. 
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