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Abstract-Importance Sampling is an unbiased sampling 
method used to sample random variables form different 
densities than originally defined. The importance sampling 
densities should be constructed to pick up ‘important’ random 
variables to improve the estimation of a interesting statistics. 
In this article, we present an importance sampling in which its 
density function is constructed from the kernel density 
estimators. This method can generate a sufficient number of 
samples, and then increase the accuracy of the probability 
estimate. 
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I.  INTRODUCTION 

Importance Sampling is an unbiased sampling method 
used to sample random variables form different densities 
than originally defined. The importance sampling densities 
are constructed to pick ‘important’ values of input random 
variables to improve the estimation of a statistical response 
of interest. The use of input sampling densities will result in 
biased estimators if they are applied directly to the 
simulation results。However, the simulation results are 
weighted to correct for the use of te importance sampling 
densities, and this ensures that the importance sampling 
estimators are unbiased。In practice, Importance sampling 
can be challenging to implement efficiently, especially in a 
general framework that will allow solutions for many 
classes of problems[1]. One of the most commonly used 
uncertainty quantification methods is Latin Hypercube 
Sampling, a stratified sampling technique which places 
samplings in equi-probability bins throughout the space. We 
are often got the request such as: “I have run an LHS 
sample of size 50 and I want to take 50 more samples that 
are more tailored to the failure region.”  A major concern 
is that even if we are able to provide an importance 
sampling density that will preferentially sample in the 
failure region, the resulting failure probability estimate may 
not be significantly improved due to the small number of 
samples that are able to be performed. 

In this article, I present a new importance sampling, 
which based on the kernel density estimators. Simulation 
indicates its robustness and accuracy. This paper is 
organized as follows: section 2 provides background on 
importance sampling,including a discussion of current 
approaches; Section 3 discusses the importance sampling 
density based on kernel density estimators that we are using; 

Section 4 give the simulations of this new methods. And 
Section 5 provides a summary. 

II.  IMPORTANCE SAMPLING BACKGROUND 

Accurate computation of high-dimensional integrals is 
common to many engineering and scientific application. 
Monte Carlo methods have been commonly used for many 
years to approximation the expectation of functions of 
random variables. That is, when calculating the expectation:  

( ( )) ( ) ( ) 1XE r X r x f x dx=  （） 

Where ( )r X is a response function, X is a 

multidimensional random variable,the estimator of 
( ( ))E r X is： 
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Note that many quantities of interest  can be cast as 
expectations, for example： 

{ }Pr ( ( ) ) [ ( ( ))]Aob r X A E I r X∈ = （3）

where, { }AI is a indicator function,namely { } 1AI =  when 

( )r X A∈ , { } 0AI =  when ( )r X A∉ . 

The purpose of importance sampling is to sample the 
random variables from a different distribution than the 
original distribution of interest and use those samples to 

calculate an estimator ˆ ( ( ))nE r X , with the goal of reducing 

the variance in the estimate. To do this , the Monte Carlo  

estimate must be weighted appropriate. If ( )Xh x  is the 

new distribution, the new estimate is derived as follows： 
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Where h(x) is importance sampling density, ( ) / ( )f x h x  is 

called the weigt function. when ( ) ( ) ( )h x r x f x∝ ,the 
variance of the importance sampling estimator is 
minimized。 

Much of the work in importance sampling has been 
finding minimum variance estimators for specific cases. 
The fundamental issue in implementing importance 
sampling is the choice of the new distribution which 
encourages the important regions of the input variables. If 

International Conference on Education Technology and Management Science (ICETMS 2013)

© 2013. The authors - Published by Atlantis Press 206



 

you have a good distribution, the payoff is a much lower 
simulation cost. There are various measure used to calculate 
the goodness of the importance sampling scheme. One is 
the ratio of the variance obtained by Monte Carlo vs the 
variance of the importance sampling result 

2 2/MC ISσ σ ;another measure is the ratio of the number of 

samples required by each scheme, given the same output 

variance /MC ISN N , In general,  a good  importance 

sampling function should be as follows: 
1. ( ) 0h x >  whenever ( ) ( ) 0r x f x ≠ . 

2. ( )h x should be close to being proportional to 

( ) ( )r x f x . 

3. It should be relatively easy to generate samples 
from ( )h x  and also to calculate the density ( )h x . 

Some standard approaches to determining ( )h x  

including scaling, where the original random variable X is 
scaled by linearly shifted to put more probability density 
into a particular region. Another classical approach is to 
assume that ( )h x  belongs to a parametric distribution 

family, for example, determining the mean and variance for 
( )h x  if it is assumed to be normal, often these parameters 

are obtained by optimizing the variance of importance 

sampling estimator ˆ
hE . 

 

 

III. IMPORTANCE SAMPLING DENSITY AND 
KERNEL DENSITY ESTIMATORS 

Kernel Density Estimation (KDE) is a technique used to 
estimate the density of a random variable X given n 

independent samples 1 2 3, , ..., NX X X X of it [2],if one 

considers the discrete distribution obtained from sampled： 

{ }
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The KDE  can be viewed as a smoothed version of this 
estimator. let (.)K  be a probability density function 

( (.) 0K > ,and (.) 1K dx = ）then KDE is 

{ }
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Where h is knonw as the bandwidth parameter,which 
controls the influnence of each sample in providing a 
density estimate at a near-by point. Small h corresponds to a 
small region of influence;a large h to a large one. In the case 
of estimating a hitting probability ,We only want points in 
the target set to contribute to the approxiamted density ,so 
we use: 
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In this paper, we chose to use the optimal bandwidth 
obtained by minizing the asymptotic mean-squared error of 
the importance sampling density. The optimal bandwidth 
was calculated  according to follows formula[3]： 
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Where full kernel is product kernel of the marginal 

densities 1 2( ) ( ) ( )... ( )d dK x K x K x K x= , 2
kσ  is the 

variance of the marginal kernel function (.)K 。 ( )dR K and 

A are given in equation 10. 
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In theoritic, The kernel function K can be any 
probability density function, but,as we use tis density in 
importantce sampling,we need it to have support over the 
entire domain. Therefore, we pick the Gaussian kernel: 
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this has the effect of making the density a mixture of 

Gaussian,Which will lead to an efficient implementation in 

the Importance Sampling algorithm[4][5].
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IV.  SIMULATIONS 

In this section, We will give two examples.  
Example 1 comparing Classical MC and IS. We 

calculate: { }Pr 6 exp(1)ob X Xθ = >  . Red line 

indicates the results which was from Importance Sampling, 
blue line display results from Classical MC. Clearly, the 
Convergence rate of IS is faster than MC mothods , it shows 
that an extra digit of accuracy on a result requires less 
replications. 

Example 2: Kernel Density Estimated of PDE. 
Let ( ) arctan( )f x x= . The blue line is the true density 

functions of ( )f x , and the red line is an Estimated plot 

using by KED. . 

V.  CONCLUSION 

This paper has proposed an importance sampling 

approach based on kernel density estimators. Although 
many nonparametric approaches to importance sampling in 
the literature use some type of density estimatation,we tried 
to develop a new approach ,which could be implemented 
for any type of simulation problem.we tested this approach 
on two tests problems and found that improtance sampling 
using this approach is reasonably robust. 
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