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Abstract - In this paper, some new discrete nonlinear
inequalities with two variables are established and explicit bounds on
the unknown function are derived. These inequalities generalize
former results and can be used as handy tools to study the qualitative
as well as the quantitative properties of certain partial difference
equations. Example of applying these inequalities to derive the
properties of boundary Value problems for difference equations is
also given.
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Boundary Value Problems.

| . Introduction

Linear and nonlinear discrete inequalities in one and more
than one independent variables which provide explicit bounds
on unknown function play a fundamental role in the
development of the theory of finite difference equations.
During the past few years there have been a number of papers
written on discrete versions of Gronwall-Bellman-type
inequalities. For example, see [1-13]. Found in [6], the
unknown function U in the fundamental form of sum-
difference inequality

u(n) <a(n) +n§:b(s)u(s)

can be estimated by
u(n) < a(n)ﬁ(1+ b(s)) <a(n) exp(ni b(s)j.

Where u(n), a(n),b(n) are nonnegative functions, a(n) is
nondecreasing. Pang and Agarwal [2] considered the
inequality

u?(n) < p2u(0) +2nz:l:[au2(s) +qg(s)u(s) |,

where «, p,Q are nonnegative constants and U and g are
nonnegative functions, and they estimated that

un)<@+a)"

pu0)+ ag(s) |

Another form of sum-difference inequality

n—:

uP(n)<c+y,

1
0

f(s)g(u(s)) + SZ h(s,o)g(u (0))}
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where C is nonnegative constant, and U, f and h are
nonnegative functions, g is nondecreasing function such that

g(u) >0on (0,0), was estimated by Pachpatte [9] as

n-1 s—1 }/P
u(n) < {Gl {G(c) + Z{ f(s)+>_h(s, a)}ﬂ :

where ro1
G(r)=| ———s.
! o(s”")

In [9], Pachpatte obtained following theorem:

Theorem 1.1 Let u(m,n), f(m,n)e D(NZR,),
h(m,n,o,7) e D(E,R,) and ¢>0,p>0 be real constants,
where E ={(m,n,o,7) e Ny :0<o<m<o,0<7r<n<oo},
if

m-1n-1

uP(mn)<c+> > [f(s,)gu(st)
s=0 t=0 (1_1)
+ZZh(S,t,a,r)g(u(a,r))},
o=07=0

for m,n e N, then for

0<m<m,0<n<n;mm,nn eN,,

1

u(m,n) < {cp;,l [®,(c)+B(m, n)]}i, (1.2)
Where

B(m,n):fn_l{f(s,t)+§§h(s,t,a,r)} (1.3)

®, (1) = [ — < ds,r >0, (1.4)

)

r, >0is arbitrary, @' is the inverse of @, and m;,n, €N, are
chosen such that @ (c)+B(m,n)eDom(®;"), for all
m,nlyingin 0<m<m,0<n<n,.

In this paper, we offer some nonlinear discrete

inequalities in two independent variables which can be used
more conveniently in specific applications. Some applications



are also given to study the behavior of solutions of certain
partial difference equations.

I1. Main Results

In what follow, we denote by R the set of real numbers.
Let R, =[0,c0), N, = {0,1 2} We use the usual convention

that the empty sum is taken to be 0. Our main result is given in
the following theorem.

Theorem 2.1 Let u(m,n),a(m,n), f(mn)eD(N,R,),
h(m,n,o,7)e D(E,R,) and c>0,p>1 be real constants,
where  E={(m,n,o,7)eN; :0<oc<m<o,0<7<n<oo},

g eC(R,,R,)be nondecreasing with g(r)>0 for r > 0. If

u®(m,n) c+mlnl a(s,tu(s,t) +m1n1[f(st Yg(u(s,t)
520 =0 520 t=0 (2.1)
+Szllih(s,t,a,r)g(u(o,r))}u(s,t),
for m,n e N,, then for
0<m<m,0<n<n;mm,nn eN,,
u(m,n)
il (2.2)
s{d) { L(c %’+A(m n))+ B(m, n)}}
Where
A(m,n) = S5 a(s,t) (2.3)
m-1n-1 s-1 t-1
B(m,n) = {f(s,t)+22h(s,t,a, r)} (2.4)
s=0 t=0 o=07=0
————ds,r>0, (25)

()=
X0
I, >0is arbitrary, @ ' is the inverse of @ _and m;,n, e N, are
chosen such that cppfl(cl'%’ + A(m, n)) + B(m, n) e Dom(d}%),
forall m,nlyingin 0<m<m,0<n<n,.
Proof. Let C > 0and define a function z(m,n) by

m-1 n-1
z(m,n)=c+ a(s,tu(s,t)
=0 t=0

[f(s.Dg(u(s,1)

0

»

n-1

3
N

(2.6)

+
\ ||M
T

+ 1 h(s,t,o- 7)g(u(o, r))}u(s t),

Q
I
o
3
O
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Then z(0,n) =z(m,0) =c, u(m,n)s{z(m,n)}%, z(m,n)

is positive and nondecreasing for m,n No,and

z(m+1,n)—z(m,n)

?
N

a(m thu(m, t)+2[f(m t)g(u(m,t))

I
Lo
s

+

h(m t,o,7)p(u(o, T)):|U(m t)

q
I
=3
Y
i
o

IN

y a(m,t) {z(m,1)}/> +Z[f(m Hg((z(m )}

t-1

T

T
.Lo

+

h(m,t, &, 7)g({z(o, T)}%}{z(m N

q
I
o

n

i[ (m,t)g({z( mt)}%)

n-1
z(m,n- 1)%’{Zamt+
t=0

.7
+m2j§:h(m,t,a,r)g({z(a, r)}%)}
Or
z(m+1,n)—2z(m,n)
{z(m, n—1)}%3
<Sa(m. t)+2[f(m Hg((z(m )}/
= (2.8)

1 t-

3
|

+

o=0

1
h(m.t,0,7)g({z(c,7)}/?) }
7=0
Keeping fixed n in (2.8), setting m=s and summing over
s from 0 to m —1, notice that

z(m-1,n)—z(m- 2n)
{z(m-2,n- 1)}%’

z(m,n)—z(m-1, n)

{z(m—l,n—l)}%

z(@,n)—z(0,n) _
{z(0,n-1)}/»

z(m,n)

{z(m—l,n—l)}%’

1 1
{Z(m—Z,n—l)}%) {Z(m—l,n—l)}%]

|

&

|

+z(m-1, n)[

1 B 1
{20n-D}° {z@n-1)}/?

+-~-+z(1,n)[

z(0,n) S z(m,n)

i {z(0n —1)}%’ {z(m-1,n _1)}%
1—/J/p.

>{z(m, n)}l_%) —C

We obtain



{z(m, n)}lﬁ% <y A(m, n)

S 1[f(s He({z(s.)}?)

s=0 t=0

s-1 t-1

+ZZh(S t,o,7)9({z(o, 2')}%J

o=017=0

]

In particular, since A(m,n) is nondecreasing in each
variable, for any fixed 0<mM<m,0<n<n,

{z(m, n)}l_%) = [{z(m, n)}%’]p_l

|

[ (500 2(5.0} )

s=0 t=0

-1

s[c P+ A(m,n)

m-1n

+

s—1 t-1
+

o=07=0

i

h(s.t,c,7)g({z(o, r)}%)}

forall m,nlyingin 0<m<m,0<n<n.
Now applying Theorem A to the function {z(m, n)}% , We have

u(m,n) < {z(m,n)}%’
< {cb;ll[cp @4 A M) +B(m, n)]}ﬂ(p ’

forall 0<m<m,0<n<n. Inparticular, this gives

u(m, ) < {cppll[cp L@ A )+ B(M, ﬁ)]}ll(p '

Since 0<m<m,0<n<n is arbitrary, this concludes the
proof of the theorem.

Theorem 2.2 Let u(m,n),a(m,n), f(m,n)eD(NZ,R,),
h(m,n,o,7) e D(E,R,) and ¢>0,p>q>0 be real constants,
={(m,n,o,7) € Ng :0<o<m<w,0<r<n<oo},
g €C(R,,R,)be nondecreasing with g(r) >0 for r >0;

If

where E

m-1n-1 m-1n-1

uP(mn)<c+> > als,hud(s,t)+>. D [f(s,t)g(u(s,t)
(2.9

s=0 t=0 s=0 t=0
s-1 t-1

+Y .3 h(s,t,0,7)g(u(o, r))}uq (s,1),

o=07=0
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for m,n e N,, then for
0<m<m,0<n<n;mm,nn €N,

u(m,n)

< {Cbpl ]

where A(m,n), B(m, n) are defined as in Theorem 2.1, and
m,,n, € N, is chosen such that

q L (2.10)
{@M %+ Am, )+ B(m, n)}} ,

Pyq (Cl_% +A(m, n))+B(m,n) e Dom(®!,))

forall m,nlyingin 0<m<m,0<n<n,.
Proof. For any r >0, define

vm=g[r).

Then clearly / is nondecreasing with y(r) >0 for r >0;
By (2.9)

(2.11)

3

-1 n-1

> a(s, Hu(s,t)

=Ny

JRICOICICD)

u(m,n)<c+

M

»
1l

0

b3

3

n-1

o @
»—\o
,_,,-o

_l’_

[e

h(s,t, o, T)w(u(r, U)):|Uq(8,t),

0 7=0

forany m,n e N,. Writing v =u*, this becomes

P m-1 n-1
vi(m,n)<c+ a(s,t)v(s,t)
s=my t=ng
m-1 n-1
+ [f (s, Dy (v(s,t))
s=0 t=0
s-1 t-1
+

o
o

h(s,t,o, )y (v(z, 0'))}V(S t),

o=V 7=

define

————ds,r >0, (2.12)

H,(r)=
e
Since % > 1, it follows from Theorem 2.1 that
v(m,n)

L w(R/ 1)
oL + A(m,n)) + B(m, n)]}

{/ "l



q

- {H(;_%[H(p_(% (cl’% + A(m,n)) + B(m, n)]} P

for all 0<m<m;,0<n<n,. Now it is elementary to check
H p in(2.11),(2.12) that
_(r), thus we have

by the definition i/,

H,, (=0,
q

_a
p—q

v(m,n) S{CI);lq[CDM (cl %% P+ A(m,n))+B(m, n)]}

0<m<m,0<n<n,.
Or

u(m,n) =va(m,n)

q V(p-0)
< {chl_q [@,,(c oL + A(m, n)) + B(m, n)]}

forall 0<m<m,0<n<n,. where m,n €N, is
chosen such that

@, o€+ A, M)+ B(mn) < Dom(®;)

for all 0<m<m,0<n<n,. An important special case of
Theorem 2.2 is the following

Corollary 2.3 Let u(m,n),a(m,n), f(m,n)e D(NZ,R,),
h(m,n,o,7) € D(E,
where
E={(mn,o,7)e Ng :0<o<m<o0,0<7<Nn< w0},
g eC(R,,R,)be nondecreasing with g(r)>0 for r >0.
If

R,)and ¢c>0,p>1be real constants,

uP(m,n)<c
+m_ nz_:a(s U (s,t) +mz_n2[f(s Doy &P

-1

+ h(s,t,o,7)g(u(o, z’))}up '(s,1),

QMH

0 7=0

for m,ne Ny, thenfor 0O<m<m,0<n<n; mm,n,n eN,,

u(m,n) chll[ch(c%’ +A(m,n))+B(m,n)} (2.14)

where A(m,n), B(m,n) are defined as in Theorem 2.2, and
m;, n, € N, is chosen such that

®,(c/? + A(m, n)) + B(m, n) € Dom(®;)

for all m,Nlying in 0<m<m;,0<n<n,.In particular, we
have the following useful consequence.
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Corollary 2.4 Let u(m,n),a(m,n), f(m,n)eD(NZR,),
h(m,n,o,7) e D(E,R,) and ¢ >0, p >1be real constants, where

E={(m,n,6,‘[)€NgZOSGSm<O0,0STSn<OO},

m-

N

n-1 m-1 n-

N

u’(mn)<c+ a(s,Hu”(s,t) + [f(s,t)u(s,t)
5=0 1=0 5=0 1=0 (2.13)
+s » 1h(S t,o,7)u(o, r)}up '(s,1),
for m,ne N, then
u(m,n) < (c%) + A(m, n))exp(B(m, n)), (2.14)

for all m,n e N,.where A(m,n), B(m,n) are defined as in
Theorem 2.2,

I11. an Application to boundary value problem

The We consider the following Boundary value problem
(BVP):

ApzP(m,n) =z"*(m,n)a(m,n)

m-1n-1 (31)
+2"(m,n)M [m,n,z(m,n),ZZG(m,n,a, 7,2(o, T))j
Satisfying
z(m,0) =a,(m),

(3.2)
2(0,n) =a,(n), a,(0) = a,(0) =0.
Where p>1are given. The following theorem gives the

bounded on solution of BVP.
Theorem 3.1. Consider (BVP). If

IM(p.q, j.k)| < f(p.a)g( i) +[K| (3.3)

|G(m,n,r,s,t)| <h(m,n,r,s)g(t) (3.4)

la,(m)|” +[a,(n)|" <c  for some c=0, (3.5)
then all solutions of (BV/P) satisfy

|z(m,n)| < @;* [d)l(c%’ +A(m, n)) + B(m, n)} (3.6)

Proof. It is easy to see that, the solution z(m,n) of (BVP)
satisfies the equivalent sun-difference equation

S 2" (s, t)a(s,t)

=0 t=0

m-1

zP(m,n) =a’(m)+a; (n)+

73

s-1 t-1

2P (s, M (s,t,z(s,t),ZZG(s,t,a,r,z(a,r))j- @7

m-1n-1
+

s=0 t=0 o=07=0

From (3.7), (3.2), (3.3), (3.4), (3.5), we have



m-1n-1

lz(m,m)|” <c+ Y. > a(s,t)|z(s,0)]"

i o e (3.8)
+_Z _Z[f(s,t)g(|z(s,t)|)
+S§:§h(s,t,o~, r)g(|z(s,t)|)}|z(s,t)|p_1.

Now a suitable application of the inequality (2.14) given in
Corollary 2.3 to (3.8) yields (3.6).
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