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Abstract - In this paper, some new discrete nonlinear 

inequalities with two variables are established and explicit bounds on 

the unknown function are derived. These inequalities generalize 

former results and can be used as handy tools to study the qualitative 

as well as the quantitative properties of certain partial difference 

equations. Example of applying these inequalities to derive the 

properties of boundary Value problems for difference equations is 

also given. 

Index Terms - Nonlinear Discrete Inequalities, Explicit Bound, 

Boundary Value Problems. 

I . Introduction 

Linear and nonlinear discrete inequalities in one and more 

than one independent variables which provide explicit bounds 

on unknown function play a fundamental role in the 

development of the theory of finite difference equations. 

During the past few years there have been a number of papers 

written on discrete versions of Gronwall-Bellman-type 

inequalities. For example, see [1-13]. Found in [6], the 

unknown function u  in the fundamental form of sum-

difference inequality 
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Where ( ), ( ), ( )u n a n b n are nonnegative functions, ( )a n is 

nondecreasing. Pang and Agarwal [2] considered the 

inequality 
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where , ,q p are nonnegative constants and u and g are 

nonnegative functions, and they estimated that  
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Another form of sum-difference inequality  
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where c  is nonnegative constant, and ,u f and h  are 

nonnegative functions, g is nondecreasing function such that  

( ) 0g u  on (0, ) , was estimated by Pachpatte [9] as 
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In [9], Pachpatte obtained following theorem:  

Theorem 1.1 Let ( , ),u m n 2

0( , ) ( , ),f m n D N R  

( , , , ) ( , )h m n D E R   and 0, 0c p  be real constants, 

where
4

0{( , , , ) : 0 ,0 },E m n N m n            

if 
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for 0, ,m n N then for  

1 10 ,0 ;m m n n    1 1 0, , , ,m m n n N  

 
1

1( , ) ( ) ( , ) ,p
p pu m n c B m n                   (1.2) 

Where 

 

1 1 1 1

0 0 0 0

( , ) ( , ) ( , , , ) ,
m n s t

s t

B m n f s t h s t
 

 
   

   

 
  

 
          (1.3) 

0
1

1
( ) d , 0,

r

p
r

p

r s r

g s

  
 
 
 


                                  (1.4) 

0 0r  is arbitrary, 1

p

  is the inverse of 
p and 

1 1 0,m n N  are 

chosen such that 1( ) ( , ) ( ),pp c B m n Dom     for all 

,m n lying in 
1 10 ,0 .m m n n     

In this paper, we offer some nonlinear discrete 

inequalities in two independent variables which can be used 

more conveniently in specific applications. Some applications 
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are also given to study the behavior of solutions of certain 

partial difference equations. 

II.  Main Results 

In what follow, we denote by R the set of real numbers. 

Let [0, ),R    0 0,1,2,N  . We use the usual convention 

that the empty sum is taken to be 0. Our main result is given in 

the following theorem. 

Theorem 2.1 Let ( , ), ( , ),u m n a m n  2

0( , ) ( , ),f m n D N R  

( , , , ) ( , )h m n D E R   and 0, 1c p  be real constants, 

where 4

0{( , , , ) : 0 ,0 },E m n N m n            

( , )g C R R  be nondecreasing  with ( ) 0g r   for 0r  . If 
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for 
0, ,m n N then for  

1 10 ,0 ;m m n n    1 1 0, , , ,m m n n N  

1

1 11
1

1 1

( , )

( ( , )) ( , ) ,
p

p

p p

u m n

c A m n B m n




 

  
        

            (2.2) 

Where  
1 1

0 0

( , ) ( , )
m n

s t

A m n a s t
 

 

                                                   (2.3) 

 

1 1 1 1

0 0 0 0

( , ) ( , ) ( , , , ) ,
m n s t

s t

B m n f s t h s t
 

 
   

   

 
  

 
              (2.4) 

0
1

1
( ) d , 0,

r

p
r

p

r s r

g s

  
 
 
 


                                         (2.5) 

0 0r  is arbitrary, 1

p

  is the inverse of 
p and 

1 1 0,m n N  are 

chosen such that 
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for all ,m n lying in 
1 10 ,0 .m m n n     

Proof. Let 0c  and define a function ( , )z m n   by 
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                       (2.6) 

Then (0, ) ( ,0) ,z n z m c    
1

( , ) ( , ) ,pu m n z m n  ( , )z m n  

is positive and nondecreasing for 0, ,m n N and 

( 1, ) ( , )z m n z m n   
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Keeping fixed n in (2.8), setting m s and summing over 

s from 0 to 1,m notice that  
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In particular, since ( , )A m n  is nondecreasing in each 

variable, for any fixed 
1 10 ,0 ,m m n n     
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for all ,m n lying in 0 ,0 .m m n n     

Now applying Theorem A to the function 
1

( , ) pz m n , we have  
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for all 0 ,0 .m m n n     In particular, this gives 
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Since  
1 10 ,0m m n n     is arbitrary, this concludes the 

proof of the theorem.   

Theorem 2.2 Let ( , ), ( , ),u m n a m n  2

0( , ) ( , ),f m n D N R  

( , , , ) ( , )h m n D E R    and 0, 0c p q    be real constants, 

where
4
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where ( , )A m n , ( , )B m n  are defined as in Theorem 2.1, and 

1 1 0,m n N  is chosen such that 
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Proof. For any 0,r   define 
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Then clearly   is nondecreasing  with ( ) 0r   for 0r  ; 

 By (2.9) 

0 0

1 1

( , ) ( , ) ( , )
m n

p q

s m t n

u m n c a s t u s t
 

 

   

1 1

0 0

1 1

0 0

( , ) ( ( , ))

( , , , ) ( ( , )) ( , ),

m n
q

s t

s t
q q

f s t u s t

h s t u u s t
 



    

 

 

 

 

 


 







 

for any 0,m n N .  Writing 
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III.  an Application to boundary value problem 

The We consider the following Boundary value problem 

(BVP): 
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From (3.7), (3.2), (3.3), (3.4), (3.5), we have  
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Now a suitable application of the inequality (2.14) given in 

Corollary 2.3 to (3.8) yields (3.6).  
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