Addendum to: "Coupled KdV Equations of Hirota-Satsuma Type" (J. Nonlin. Math. Phys. Vol. 6, No. 3 (1999), 255-262)

S Yu SAKOVICH

Department of Physics, Middle East Technical University, 06531 Ankara, Turkey
Permanent address:
Institute of Physics, National Academy of Sciences, 220072 Minsk, Belarus
E-mail: saks@pisem.net
Received February 12, 2001; Accepted March 10, 2001

Abstract

It is shown that one system of coupled KdV equations, found in J. Nonlin. Math. Phys., 1999, V.6, N 3, 255-262 to possess the Painlevé property, is integrable but not new.

In our recent paper [1], we found that the system of coupled KdV equations

$$
\begin{align*}
u_{t} & =u_{x x x}+9 v_{x x x}-12 u u_{x}-18 v u_{x}-18 u v_{x}+108 v v_{x}, \\
v_{t} & =u_{x x x}-11 v_{x x x}-12 u u_{x}+12 v u_{x}+42 u v_{x}+18 v v_{x} \tag{1}
\end{align*}
$$

passes the Painlevé test for integrability well, but we were unable to find a parametric zero-curvature representation for this system there. In this addendum, we show that the system (1) is integrable but not new: it is related by a simple transformation of variables to an integrable system introduced a long time ago by Drinfeld and Sokolov [2].

In their paper, in Example 13, Drinfeld and Sokolov gave the Lax representation $L_{t}=$ $[A, L]$ with the differential operators

$$
\begin{align*}
L & =\left(D^{3}+2 u D+u_{x}\right)\left(D^{2}+v\right), \\
A & =D^{3}+\left(\frac{6}{5} u+\frac{3}{5} v\right) D+\left(-\frac{3}{5} u_{x}+\frac{6}{5} v_{x}\right) \tag{2}
\end{align*}
$$

for the system of coupled KdV equations

$$
\begin{align*}
& u_{t}=-\frac{4}{5} u_{x x x}+\frac{3}{5} v_{x x x}-\frac{12}{5} u u_{x}+\frac{3}{5} v u_{x}+\frac{6}{5} u v_{x} \\
& v_{t}=\frac{3}{5} u_{x x x}-\frac{1}{5} v_{x x x}+\frac{12}{5} v u_{x}+\frac{6}{5} u v_{x}-\frac{6}{5} v v_{x} \tag{3}
\end{align*}
$$

It is easy to see that the transformation

$$
\begin{equation*}
t \rightarrow 10 t, \quad u \rightarrow-\frac{3}{2} u+\frac{3}{2} v, \quad v \rightarrow-2 u-3 v \tag{4}
\end{equation*}
$$

changes the system (3) into the system (1). This solves the problem of integrability of the system (1). Moreover, using the scalar spectral problem $L \phi=\lambda \phi, \phi_{t}=A \phi$, where the operators L and A are given by (2) and λ is a parameter, and the transformation (4), we can construct the first-order linear problem $\Psi_{x}=X \Psi, \Psi_{t}=T \Psi$, or the zero-curvature representation $X_{t}=T_{x}-[X, T]$, for the system (1), with the following 5×5 matrices X and T :

$$
X=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
2 u+3 v & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & \frac{3}{2}(u-v) & 0 & 1 \\
\lambda & 0 & 0 & \frac{3}{2}(u-v) & 0
\end{array}\right),
$$

$T=\left\{\left\{5 u_{x}-15 v_{x},-10 u+30 v, 0,10,0\right\},\left\{5 u_{x x}-15 v_{x x}-20 u^{2}+30 u v+90 v^{2},-5 u_{x}+\right.\right.$ $\left.15 v_{x}, 5 u+15 v, 0,10\right\},\left\{10 \lambda, 0,30 v_{x},-30 v, 0\right\},\left\{0,10 \lambda, 30 v_{x x}-45 u v+45 v^{2}, 0,-30 v\right\},\{5 \lambda u+$ $\left.\left.15 \lambda v, 0,10 \lambda, 30 v_{x x}-45 u v+45 v^{2},-30 v_{x}\right\}\right\}$, where the cumbersome matrix T is written by rows.

We can conclude now, that all the systems of coupled KdV equations, which passed the Painlevé test in [1], have turned out to be integrable.

The author is deeply grateful to Prof. Atalay Karasu for a copy of [2] and numerous useful discussions, and to the Scientific and Technical Research Council of Turkey (TÜBİTAK) for support.

References

[1] Sakovich S Yu, Coupled KdV Equations of Hirota-Satsuma Type, J. Nonlin. Math. Phys. 6, No. 3 (1999), 255-262.
[2] Drinfeld V G and Sokolov V V, New Evolutionary Equations Possessing (L-A)-Pair, in Proceedings of the S L Sobolev Seminar, Novosibirsk, 1981, Volume 2, 5-9 (in Russian).

