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 Abstract - We developed forecasting models based on the 

advanced statistical (stochastic) and soft computing (computational 

intelligence) techniques for predicting high frequency data sets. 

Firstly, we used the standard statistical tools such as the 

autocorrelation/partial autocorrelation function, clustering, etc. to 

identify the chunks of information that are deemed essential for 

knowledge representation. Afterwards, (1) we proposed statistical 

methods to identify the relationship between the information granules; 

(2) based on the platform of granular or soft computing (G or SC) we 

developed and formal expressed the underlying mechanisms (models) 

that generate the observed data and, in turn, to forecast future values 

of the investigated process in managerial decision-making. The 

proposed intelligent approach is applied to the time series of 

USD/EUR exchange rates. We found that it is possible to achieve 

significant risk reduction in managerial decision-making by applying 

intelligent forecasting models based on the latest information 

technologies. We show that statistical GARCH-class models can 

identify the presence of the leverage effect and to react to the good 

and bad news. In a comparative study is shown, that both presented 

modeling approaches are able to model and predict high frequency 

data with reasonable accuracy, but the neural network approach is 

more effective and accurate. 

 Index Terms – ARIMA/ARCH/GARCH models, forecast 

accuracy, soft computing, RBF neural networks. 

I.   Introduction 

   In economics and in particular in the field of financial 

markets, forecasting is very important because forecasting is 

an essential instrument to operate day by day in the economic 

environment. Over the past ten years academics of computer 

science have developed new soft techniques based on latest 

information technologies such as soft, neural and granular 

computing to help predict future values of high frequency 

financial data. At the same time, the field of financial 

econometrics has undergone various new developments, 

especially in finance models, stochastic volatility, and software 

availability. Recently, most developed statistical (econometric) 

models assume a nonlinear relationship among variables. As 

example are the exponential and power GARCH models and 

autoregressive models. These are model-driven approaches 

based on a specific type relation among the variables. Neural 

networks and other soft computing techniques, on the other 

hand, are data driven models and nonparametric models. 

Unlike in classical statistical inference, the parameters are not 

predefined and their number depends on the training data used. 

Parameters that define the capacity of model are data-driven in 

such a way as to match the model capacity to the data 

complexity. In this paper, two novel forecasting models are 

proposed for EUR/USD exchange rate prediction. The first 

based on latest statistical methods makes use of 

ARIMA/GARCH-class models, and another is the neural 

network based on the radial basic activation function that 

makes uses both supervised learning methods and un-

supervised learning methods. Then, we discuss certain 

management aspects of proposed forecasting models such as 

capabilities and interests of the people who will make and use 

the forecast. in their decision processes.      

The paper is organized as follows. In Section 2 we briefly 

describe basic ARCH-GARCH models and characterize the 

neural approach. In Section 3 we present the data, conduct 

some preliminary analysis of the time series and demonstrate 

the forecasting abilities of ARCH-GARCH modes of an 

application. In Section 4 we introduce the architectures of 

RBF (Radial Basic Function) networks. In Section 5 we put an 

empirical comparison. Section 6 briefly concludes. 

II.   Theoretical Background 

  Traditional statistical/econometric models assume a 

constant one-period forecast variance. But, the financial time 

series features various forms of nonlinear dynamics, the 

crucial one being the strong dependence of the instantaneous 

variability of the series on its own past [1]. To predict the 

financial time series data a regression model is used with 

disturbances following an ARCH type process. 

A. ARIMA Time Series Models  

Time series models have been initially introduced either 

for descriptive purposes like prediction or for dynamic control. 

In this paper we will use linear time series models so-called 

ARIMA which are very easy implement well-established 

methods for time series prediction. They combine 

autoregressive (AR), and moving average (MA) part. AR is a 

linear combination of previous values, 'I' is an operator for 

differencing a time series and MA is a linear combination of 

previous errors. An ARMA(p, q) model of orders p and q is 

defined by 
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where {
i
 } and {

i
 } are the parameters of the autoregressive 

and moving average parts respectively, and 
t
  is white noise 

with mean zero and variance 
2 . We assume 

t
  is normally 

distributed, that is, 
t
 ~ ),0( 2N . ARIMA(p, d, q) then 

represents the dth difference of the original series as a process 

containing p autoregressive and q moving average parameters. 

The method of building an appropriate time series forecast 

model is an iterative procedure that consists of the 

implementation of several steps. The main four steps are: 

identification, estimation, diagnostic checking, and forecasting. 

For details see [2].  

B. Asymmetric ARCH time series models 

  Among the field of applications where the standard 

ARIMA fit is poor are financial and monetary problems. 

Exchange rates, stock market returns and other 

macroeconomic variables of generally high frequency are 

likely to originate from low complexity chaos. Detection of 

nonlinear hidden pattern in such time series provides important 

information about their behavior and improves the forecasting 

ability over short time. In this context, ARCH models 

introduced by Engle [3] arose as an appropriate framework for 

studying these problems. Bollerslev [4] proposed a useful 

extension of Engle ś ARCH model known as the generalised 

ARCH (GARCH). In the literature several variants of basic 

GARCH model has been derived. In the basic GARCH model 

if only squared residuals 
it

  enter the equation, the signs of 

the residuals or shocks have no effects on conditional volatility. 

  The basic GARCH model can be extended to allow for 

leverage effects. This is performed by treating the basic 

GARCH model as a special case of the power GARCH 

(PGARCH) model proposed by Ding, Granger and Engle [4]. 
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where d is a positive exponent, and i  denotes the coefficient 

of leverage effects [4]. 

  Commonly used asymmetric volatility models are the 

ARCH type models. Especially the TGARCH (threshold 

GARCH) and EGARCH (Exponential GARCH) models will 

be applied, which allows for leverage effects. TGARCH 

models divides the distribution of the innovations into 

disjunctive intervals and then approximate a piecewise linear 

function for the conditional standard deviation or the 

conditional variance respectively. However, a stylized fact of 

financial volatility is that bad news (negative shocks) tends to 

have a larger impact on volatility than good news (positive 

shocks). Nelson [5] proposed the following exponential 

GARCH model abbreviated as EGARCH to allow for leverage 

effects in the form 
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 Note if 
it

  is positive or there is “good news”, the total 

effect of 
it

  is  
iti 

 1 . However contrary to the “good 

news”, i.e. if it  is negative or there is “bad news”, the total 

effect of 
it

  is  
iti 

 1 . Bad news can have a larger 

impact on the volatility. Then the value of i  would be 

expected to be negative [6]. 

  As we mentioned early, another extension of the clasic 

GARCH model that alows for leverage effect is the treshold 

GARCH. TGARCH models divide the distribution of the 

innovations into disjunctive intervals and then approximate a 

piecewise linear function for the conditional standard 

deviation or the conditional variance respectively [7]. 

TGARCH models have therefore the following form: 
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where 1itS  if 
it < 0 and 0

it
S

 
if 0it . 

  Depending on the threshold value, 2

1t  will have different 

effects on the conditional variance 
2

t
 , as it follows: when 

1t
  is positive, total effects are given by 

2

11 t
 , when 

1t
  is 

negative, total effects are given by 
2)(

itii 
  . 

C. Neural Approach  

  For the investigation with neural networks an RBF (soft, 

classic and granular) three layer feed-forward net is employed, 

where the output layer weight are trained by using 

backpropagation algorithm, whereas the hidden layer weights 

are found by a clustering algorithm applied to the input data 

which is an unsupervised learning technique. The transfer 

function in the hidden layer is a radial basic function, whereas 

for the output unit a linear transfer function is applied. Despite 

the fact that RBF neural networks possess a number of 

attractive properties such as the universal approximation 

ability and parallel structure, they still suffer from problems 

like the existence of many local minima and the fact that it is 

unclear how one should choose the number of hidden units. In 

order to avoid over-fitting and data-fitting the networks are 

kept simple (the number of hidden units in varied between 3 

and 10). For more details see [8]. 

III.   Data and Model Estimates 

  We illustrate the ARCH/ARCH methodology on the 

developing a forecast model for daily EUR/USD exchange 

rates time series. This time series was obtained from 

http://oanda.com/currency/historical-rates/ for period from 

2001 till 2010, it includes total of 3652 observations. We have 

10 years long time series of the closing rates of EUR/USD 

exchange rates (see Fig.1). 
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Fig. 1   Time series of the daily exchange rates (2001 – 2010): EUR 

currency against the US dollar (USD). 

  The time series in Fig. 1 exhibits non-stationary 

behaviour. However, after its first differencing is stationary. 

To build a forecast model the sample period (Jan 2001 – Oct 

2010 training data set denoted  ) was defined and the ex post 

forecast period (Nov 2010 – Dec 2010 as validation data set 

denoted  ). 

  Input selection is crucial importance to the successful 

development of an ARIMA-ARCH model. Tentative 

identification of an ARIMA time series model is done through 

analysis of actual historical data. The primary tools used in 

identification process are autocorrelation and partial 

autocorrelation functions (ACF, PACF). The theoretical ACF 

and PACF are unknown and must be estimated by the sample 

ACF and PACF. According to these criterion we tentatively 

identify the underlying model of our series to by stationary 

ARIMA(1, 1, 1) with the equation as follows  

tttt
yy  

 1111
                          (5) 

where   is the difference operator defined as .
1


ttt

yyy  

  As we mentioned early, high frequency financial data, like 

our EUR/USD exchange rate time series, reflect a stylized fact 

of changing variance over time. An appropriate model that 

would account for conditional heteroscedasticity should be 

able to remove possible nonlinear pattern in the data. Various 

procedures are available to test an existence of ARCH or 

GARCH. A commonly used test is the LM (Lagrange 

Multiplier) test. The LM test assumes the null hypothesis H0: 

0...
21


p

  that there is no ARCH. The LM statistics 

has an asymptotic 
2  distribution with p degrees of freedom 

under the null hypothesis. For calculating the LM statistics see 

for example [2, 5]. The LM test performed on the EUR/USD 

exchange rates indicates presence of autoregressive 

conditional heteroscedasticity. 

  In many cases, the basic GARCH model with normal 

Gaussian error distribution provides a reasonably good model 

for analyzing financial time series and estimating conditional 

volatility. However, there are some aspects of the model which 

can be improved so that it can better capture the characteristics 

and dynamics of a particular time series. For this purpose the 

Quantile-Quantile (QQ) plots are used. For example, the R 

system (http://cran.r-project.org/) assist in performing residual 

analysis (computes the Gaussian, studentized and generalized 

residuals with generalized error distribution – GED) with 

relevant AIC criterions and Likelihood function ś values. 

Parameter estimates were obtained by ML (Maximum 

Likelihood) method using the R2.6.0 software. Our final 

model has the form 

11
041943.0000126.0ˆ 


ttt

yy                            (6) 

for mean equation, and 

1

2

1

7 969150.0030278.010.46.2


 
ttt

hyh                (7) 

for GARCH(1,1) model with GED distributions. 

  Finally to test for nonlinear patterns in EUR/USD 

exchange rates the fitted standardized residuals 
ttt

he /ˆ   

were subjected to the BDS test. The BDS test (at dimensions 

  = 2, 3, and tolerance distances  = 0.5, 1.0, 1.5, 2.0) finds 

no evidence of nonlinearity in standardized residuals of the 

EUR/USD exchange rates time series. The fitted vs. actual 

EUR/USD exchange rates for the validation data set are 

graphically displayed in Fig. 2. 
 

 
 

Fig. 2   Actual (solid) and forecast (dotted) values of the  EUR/USD exchange 

rate forecast - statistical alternative, model ARIMA(1,1,1) + GARCH(1,1).  

IV.   Neural Approach 

  The same data used for estimating the linear 

AR(3)+EGARCH(1,1) model was also used to train neural 

network. The variables forming the right hand of the model 

given by Eq. (1) above were used as input units into the neural 

network. 

For the investigation of the neural networks a granular 

RBF (Radial Basic Function) net was employed [9], (see Fig. 

3), where the weights 
j

v  have been trained by using 

Backpropagotion. The transfer function in the hidden layer is a 

Gaussian RBF with cloud concept [9, 10], whereas for the 

output unit a linear transfer function is applied. The output 

values 
N

j
o  from the hidden layer are “normalized”, i. e. the 

values whose sum is equal to 1. The weights 
j

w  are the 

centers 
j

c of the radial basis functions [10]. To find the 

weights wj or centers 
j

c of activation functions we used the 

adaptive (competitive learning) version of Kohonen ś rule for 

clustering input data set.  
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As the neural network in this study is used as a non-linear 

supplement of linear ARIMA (1,1,1) + GARCH(1,1) approach, 

the network architecture allows linear input/output-links to be 

included. 

 

 
 

Fig. 3   Granular RBF neural network architecture with cloud activation 

function (CAF). 

In order to avoid over-fitting, the network was kept simple 

(the number of hidden units were 10 the learning rate was set 

to 0.05. The ex post forecasts evaluation by statistical 

summary measures of model ś forecast accuracy are given in 

Table I. 

TABLE I   Comparison of forecast summary statistics for EUR/USD 

exchange rate time series - statistical and neural approach: ex post period 

Model 

Forecast accuracy 

RMSE MAE MAPE 

ARIMA(1,1,1) + GARCH(1,1) 0.00793 0.00646 0.00495 

Neural Approach Inputs:  

1


t
y , 

1t
  

0.00185 0.00145 0.00107 

The fitted vs. actual EUR/USD exchange rates for the 

validation data set are graphically displayed in Fig. 4. 

V.  Empirical Comparison and Discussion 

  From Table I it is shown that both forecasting models 

used are very accurate. The development of the error rates on 

the validation data set showed a high inherent deterministic 

relationship of the underlying variables. Though promising 

results have been achieved with both approaches, for the 

chaotic financial markets a purely linear (statistical) approach 

for modeling relationships does not reflect the reality. For 

example if investors do not react to a small change in 

exchange rate at the first instance, but after crossing a certain 

interval or threshold react all the more, then a non-linear 

relationship between 
t

y  and 
3t

y , 
1t

  exist in model (6). 

  The training process and development of neural approach 

based on G RBF NN not only detected the functionality 

between the underlying variables as well as the short-run 

dynamics. Moreover, as we could see, the RBF NNs have such 

attributes as computational efficiency, simplicity, and ease 

adjusting to changes in the process being forecast. Thus, 

neural networks are usually used in the complicated problems 

of prediction because they minimize the analysis and modeling 

stages and the resolution time. Thus, we can expect more 

interests of the people who will make and at the some time use 

the forecast. If the managers are convinced that the forecasting 

system is sound and , they may make little use of the 

information given to them. 

 

Fig. 4  Actual (solid) and forecast (dotted) values of the EUR/USD exchange 

rate forecast (neural approach). 

VI . Conclusion 

  The results of the study showed that there are more ways 

of approaching the issue of risk reducing in managerial 

decision-making in companies, financial institutions and small 

enterprises. It was also proved that it is possible to achieve 

significant risk reduction in managerial decision-making by 

applying modern forecasting models based on information 

technology such as neural networks developed within artificial 

intelligence. In future research we plan to extend presented 

methodologies by applying fuzzy logic systems to incorporate 

structured human knowledge into workable learning 

algorithms. 
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