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 Abstract - A hyperspectral image usually has a large data 

volume. Several dimensionality reduction (DR) approaches have 

been investigated to remove redundant information from highly 

corrected bands. One of the DR approaches is the unsupervised 

cluster-based band selection (UCBS) method, that is, the bands can 

be grouped together using different cluster strategies. The method is 

time consuming, however, because of iterative processing in the band 

cluster-stage. In this paper, an unsupervised cluster-based band 

selection method is proposed. The method including two steps is 

called SensorClust. Firstly the cross-correlation matrix of the entire 

image was computed and Landsat ETM+ sensor wavelength ranges 

were used to cluster bands. Secondly in each cluster the covariance 

matrix was computed, and the bands were selected with the 

maximum or minimum values along the diagonal of covariance 

matrix. To demonstrate the effectiveness of the proposed method, a 

support vector machine (SVM) was selected to carry out supervised 

classification. The experimental results show the proposed method 

achieves good classification results in terms of robust clustering. 

Index Terms - Hyperspectral image, band selection, 

dimensionality reduction, Landsat. 

I.   Introduction 

 Hyperspectral imagery comprises potentially hundreds of 

narrow spectral bands, and adjacent bands generally correlate 

strongly. Removal of redundancy bands can not only save 

computation time but also improve classification performance. 

Two techniques reduce hyperspectral dataset dimensionality. 

First, feature extraction transforms spectral bands into a low-

dimensional feature space. Second, band selection selects a 

subset of spectral bands, which contain most information. 

Researchers may use prior knowledge (i.e., a supervised 

manner) to reduce dimensionality and preserve the desired 

object information. However, the requisite prior knowledge for 

hyperspectral dataset is usually not available in practice. 

Unsupervised feature extraction algorithms (e.g., principal 

component analysis) are in wide use to reduce hyperspectral 

dataset dimensionality for classification. Nevertheless, their 

limitation is that they mathematically transform original bands 

into feature space, which has no physical meaning in 

interpretation. Currently, the unsupervised band selection 

methods still have been proposed to overcome this problem 

[1][2]. Furthermore, several researchers use different cluster-

based strategies to select bands and to reduce dimensionality 

[3][4][5]. In general, the cluster-based algorithms include two 

stages: joining similar bands by clustering strategy and 

selecting the cluster representative band by dissimilarity 

measure [6]. Nevertheless, cluster-based algorithms are time 

consuming, due to iterative processing in the band cluster 

stage. 

This paper proposes a novel unsupervised cluster-based 

band selection method using a fast clustering strategy and 

covariance matrix to select bands. Section 2 provides a 

description of the proposed method. Section 3 describes the 

experimental results. Finally, Section 4 includes some 

concluding statements and comments on plausible future 

research. 

II. Proposed Unsupervised Sensor Cluster-based Band 

Selection 

Without prior knowledge (e.g., training samples) an 

unsupervised cluster-based band selection (UCBS) method, 

called SensorClust, is proposed. The method is not only to 

reduce hyperspectral dataset dimensionality without prior 

knowledge (e.g., training samples) but also to cluster bands 

fast. It includes four steps. Firstly cross-correlation matrix is 

computed from the entire image. In the cross-correlation 

matrix, contiguous bands along the diagonal line show in 

square blocks, representing high correlation among them. 

Secondly this paper adopts Landsat ETM+ sensor 

wavelength ranges; thus grouping the cross-correlation matrix 

of the hyperspectral dataset into six major clusters. The six 

major clusters are along the diagonal line with separation lines 

between blocks at wavelengths: 450 – 515, 525 – 605, 630 – 

690, 750 – 900, 1550 – 1750, and 2080 – 2350 nm. 

Thirdly the cross-correlation matrix is re-analyzed. If a 

high correlation block along the diagonal line is not included 

in the six major clusters, the bands of this block are grouped 

into an additional cluster. 

At last, covariance matrix in each cluster is computed. 

Along the covariance matrix diagonal, we select the band with 

the maximum value as the primary band and the band with the 

minimum value as the secondary band because the two bands 

have largest dissimilarity measures of the covariance values. 

III.  Experimental Results 

A.  Data Sets 

This paper uses two hyperspectral images to reduce 

dimensionality and evaluate classification performance. The 

AVIRIS – Indian Pine image with 16 classes of labeled 

samples is available at 

http://engineering.purdue.edu/~biehl/MultiSpec/ (Figure 1, 

Left). Researchers randomly selected 15% of the labeled 

samples from each class for training, using the rest for 

International Conference on Advanced Computer Science and Electronics Information (ICACSEI 2013)

© 2013. The authors - Published by Atlantis Press 562

mailto:wujc@niu.edu.tw


validation. The image has 220 contiguous spectral channels 

covering a spectral region from 400 to 2500 nm in 

approximately 10 nm bandwidths. In the first scenario, bands 

104 – 108, 150–163, and band 220 were not used because of 

atmospheric water vapor absorption, and only 200 spectral 

bands were used. In the second scenario, additional bands 1–3, 

103, 109 – 112, 148 – 149, 164 – 165, and 217 – 219 were 

discarded because of low signal to noise ratio (SNR), and only 

185 bands were used. 

 

      

Fig. 1   The two hyperspectral images. (Left) AVIRIS – Indian Pine image, 

RGB composite (band 30, 20, and 10). (Right) HYDICE – Fort Hood 

image, RGB composite (band 49, 35, and 18). 

The second scene, HYDICE – Fort Hood imagery is 

available for downloaded at 

http://www.agc.army.mil/Hypercube/ (Figure 1, Right). The 

dataset comprises 307 pixels by 307 lines by 210 bands. 

Researchers generated 11 land use classes and labeled samples 

for this paper. They randomly selected 5% of each class’ 

labeled samples for training, using the remaining label samples 

for validation. In the first scenario, bands 104 – 109, 139 – 

151, and 206 – 210 were not used due to atmospheric water 

vapor absorption, and only 186 spectral bands were used. In 

the second scenario, additional bands 1 – 4, 76, 87, 101 – 103, 

110 – 111, 136 – 138, 152 – 153, and 198 – 205 were 

discarded because of bad quality, and only 162 bands were 

used [7]. 

B.  Selection of Primary and Secondary Bands 

The cross-correlation matrices of the AVIRIS and 

HYDICE images are computed. The two matrices are blocked 

at six wavelength ranges: 450 – 515, 525 – 605, 630 – 690, 

750 – 900, 1550 – 1750, and 2080 – 2350 nm, and the six 

major clusters are corresponding to band 7 – 12, 14 – 21, 25 – 

32, 39 – 54, 123 – 143, and 178 – 204 at Indian Pine image as 

shown in Figure 2; and band 16 – 30, 32 – 44, 48 – 54, 60 – 

72, 118 – 133, and 164 – 192 at Fort Hood image as shown in 

Figure 3. 

Then, we analyze the two cross-correlation matrices. 

Following the 750 – 900 nm square blocks, high correlation 

bands exist between 900 nm and 1352 nm along the matrices’ 

diagonal. This paper assumes two additional clusters, 900 – 

1130 nm and 1130 – 1360 nm (see Table I). 

 

   

Fig. 2   Cross-correlation matrix of the AVIRIS – Indian Pine, IN image. The 

diagonal line indicates the highest correlation, 1. Yellow squares 

represent Landsat ETM+ sensor wavelength ranges. 

    

Fig. 3   Cross-correlation matrix of the HYDICE – Fort Hood, TX image. The 

diagonal line indicates the highest correlation, 1. Yellow squares 

represent Landsat ETM+ sensor wavelength ranges. 

TABLE I    Proposed SensorClust for band selection 

Types of clusters wavelength unit: nm 

Major clusters 
450 – 515/ 525 – 605/ 630 – 690/ 750 – 

900/ 1550 – 1750/ 2080 – 2350 

Two additional clusters 900 – 1130/ 1130 – 1360 

Refer to Table I, in the AVIRIS – Indian Pine image, the 

primary bands are 12/21/29/42/123/180 from the major 

clusters, and bands 55/89 from the two additional clusters. The 

secondary bands are 7/14/31/40/143/204 from the major 

cluster. In the HYDICE – Fort Hood image, the primary bands 

are 28/44/53/60/118/168 from the major clusters, and bands 

76/90 from the two additional clusters. The secondary bands 

are 16/34/48/72/127/177 from the major clusters. 

C.  Parameters used in dimensionality reduction and classifier 

To demonstrate the effectiveness of the proposed method, 

results are compared with a feature extraction method (i.e. 

principal component analysis, PCA) and two clustering based 

methods (i.e. hierarchical clustering WaLuMI [8], and 

recursive binary band-splitting BandClust [9]) in terms of 

use/cover classification accuracy and Kappa coefficient. 
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The PCA transformed bands into feature dimensions with 

dimensions set to 6, 8, 14, 20, and 25. For band selection, the 

proposed SensorClust clustered bands and selected 6, 8, and 

14 bands. The WaLuMI method clustered bands and selected 

6, 8, 14, and 20 bands. The BandClust method clustered bands 

and selected 8 and 15 bands for AVIRIS – Indian Pine image, 

and selected 7 bands for HYDICE – Fort Hood image (see 

Table II). 

TABLE II  The BandClust for Band Selection 

Images Selected bands 

AVIRIS - Indian Pine (8 bands) 

average(band 4- 28),  

average(band 28- 41),  

average(band 41- 76),  

average(band 76- 99),  

average(band 99- 102),  

average(band 113- 134),  

average(band 134- 140),  

average(band 140- 147, 166- 185) 

AVIRIS - Indian Pine (15 bands) 

average(band 4- 28),  

average(band 28- 32),  

 average(band 32- 36),  

average(band 36- 41),  

average(band 41- 47),  

average(band 47- 54),  

average(band 54- 76),  

average(band 76- 99),  

average(band 99- 102),  

average(band 113- 115),  

average(band 115- 122), 

 average(band 122-134),  

average(band 134-140),  

average(band 140- 147), 

 average(band 166- 185) 

HYDICE – Fort Hood  (7 bands) 

average(band 1- 8),  

average(band 8- 30),  

average(band 30- 40),  

average(band 40- 55),  

average(band 55- 103), 

 average(band 110- 138), 

 average(band 152- 205) 

 

Environment for Visualizing Images (ENVI®) [10] 

performed supervised classification to derive land use/cover 

classes in the hyperspectral images. We set three parameters 

(kernel type, gamma in kernel function and penalty) for the 

support vector machine classifier. The radial basis function 

(RBF) of kernel type was chosen, the default value of the 

gamma parameter was used, and the penalty values were set to 

100, 1000, and 10000. 

D.  Results 

The scenarios used three random replications to guarantee 

classification accuracy stability. The best classification results 

were always obtained using the RBF kernel and the penalty 

value of 10000; this paper only reports the results obtained 

using this configuration at each setting dimension. The 

classification performance of each method is evaluated as the 

average of kappa coefficients shown in Figure 4 and Figure 5, 

and we have the flowing findings. 

1.  If the bands (i.e. water vapor bands, noise bands, and bad 

bands) are carefully removed from original dataset, we can 

get the highest kappa coefficient classification accuracy. 

2.  Classification results show that the PCA feature extraction 

method outperformed the cluster-based band selection 

methods with the higher kappa coefficient. However, the 

PCA method is sensitive to noise. When transforming 

image spectral bands from spectral space to feature space, 

we carefully select bands from the dataset to better 

preserve the feature information. 

3.  The curse of dimension was already observed in Figure 4 

and Figure 5 using the number of the PCA bands larger 

than 20. Moreover, in Figure 5 the curse of dimension 

occurred using the number of the WaLuMI bands larger 

than 14. 

4.  For unsupervised cluster-based band selection, in Figure 4 

the BandClust yields the highest kappa coefficient value 

with lesser bands. However, the proposed method and the 

WaLuMI method result in a higher kappa coefficient than 

the BandClust in Figure 5 from the number of bands larger 

than 8. 

5.  The classification results of the proposed method can be 

compared with the WaLuMI method when the numbers of 

dimensions increase from 6 to 14 in the two Figures. 

        

Fig. 4  Classification results obtained on the AVIRIS – Indian Pine image: 

Effect of dimensionality reduction on kappa coefficient as a 

function of dimension. 

 

Fig. 5 Classification results obtained on the HYDICE – Fort Hood 

image: Effect of dimensionality reduction on kappa coefficient as 

a function of dimension. 
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IV.  Conclusion 

 The benefits of the proposed method are that the bands are 

clustered easily and that the selected bands can be interpreted 

with the physical meanings. Prior knowledge of the satellite 

sensor wavelength range settings can help us to discriminate 

spectral information among various features on the Earth. This 

paper proposes a novel unsupervised cluster-based band 

selection method using Landsat ETM+ sensor wavelength 

ranges to cluster bands and reduce data volume. Results are 

found to be encouraging when the proposed methodology is 

compared with the two well-known unsupervised cluster-based 

band selection methods in reducing dimensions for 

classification. Future research will not only to discover the 

other implicit clusters from cross-correlation matrix, but also 

to explore the other satellite sensor wavelength ranges for 

different hyperspectral image applications, such as geology 

end-member extraction application. 
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