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Abstract

We obtain the collection of symmetric and symplectic matrix integrals and the collec-
tion of Pfaffian tau-functions, recently described by Peng and Adler and van Moerbeke,
as specific elements in the Spin-group orbit of the vacuum vector of a fermionic Fock
space. This fermionic Fock space is the same space as one constructs to obtain the
KP and 1-Toda lattice hierarchy.

In memory of F D Veldkamp

1 Introduction

Recently H Peng [11] showed that the symmetric matrix model and the statistics of the
spectrum of symmetric matrix ensembles is governed by a strange reduction of the 2-
Toda lattice hierarchy [12]. Adler and van Moerbeke [4, 5] (see also [2]) show that this
reduction leads to vectors of Pfaffian tau-functions. However these Pfaffian tau-functions
do not satisfy the Toda lattice hierarchy, but rather another system of PDE’s, which
can be identified as the BKP hierarchy in the form described by V Kac and the author
in [9]. To be more explicit, let Sm(E) be the set of m × m symmetric matrices with
spectrum in E ⊂ R (a union of intervals), dZ the Haar measure on symmetric matrices

and V (t, z) = V (z) +
∞∑
i=1

tiz
i, where V (Z) is a potential. Applying the spectral theorem

to the symmetric matrix Z = OTdiag
(
z0, ..., zm−1

)
O, with O ∈ SO(m), we find upon

integrating over the special orthogonal group the following formula for the symmetric
matrix integral (see also [4]).

τ̂Em(t) =
∫
Sm(E)

eTrV (t,Z)dZ = cm

∫
Rm

|∆m(z)|
m−1∏
i=0

(eV (t,zi)IE(zi)dzi), (1.1)

where ∆m(z) =
∏

0≤i<≤j≤m−1
(zj − zi) is the Vandermonde determinant. Adler and van

Moerbeke [4, 5] show (see also Section 2) that these integrals for m = 2n can be expressed
in certain Pfaffians:

τ̂E2n = (2n)!c2nPf ((µk,�(t))0≤k,�≤2n−1) . (1.2)
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Here Pf(A) stands for the Pfaffian of a skew-symmetric matrix A = (Aij)0≤i,j≤2n−1 defined
by

Pf(A) =
1

2nn!

∑
σ∈S2n

sg(σ)
n−1∏
j=0

Aσ(2j),σ(2j+1).

(if n = 0 we assume Pf(A) = 1) and µij(t) = 〈yi, zj〉t are the moments of the time-
dependent skew-symmetric inner product

〈f, g〉t =
∫∫

E2

f(y)g(z)eV (t,y)+V (t,z)sg(z − y)dydz. (1.3)

The formula for τ̂Em will be obtained Section 2. If m is odd, it is also a Pfaffian, but the
expression is more complicated.
In this paper we will show, using the Clifford algebra techniques of [9], that replacing

τ̂Em by τEm = τ̂E
m

m!cm
, the generating series,

τE(t, q) =
∞∑
m=0

τEm(t)q
m,

of these Pfaffians is a specific element in the Spin group orbit of the vacuum vector in a
fermionic Fock space. The fermionic Fock space which is constructed is more or less the
same as the one one uses to obtain the KP hierarchy and 1-dim Toda lattice hierarchy.
However, these tau-functions do not satisfy the KP or Toda lattice hierarchy, but we will
show in section 4 that they satisfy the (charged) BKP hierarchy of [9] (see also Section 3):

Res
(
zn−1eξ(t

′,z)e−η(t
′,z)τn−1(t′)z−m−1e−ξ(t

′′,z)eη(t
′′,z)τm+1(t′′)

+ (z)−n−1e−ξ(t
′,z)eη(t

′,z)τn+1(t′)(z)m−1eξ(t
′′,z)e−η(t

′′,z)τm−1(t′′)
)

=
1
2
(
1− (−1)n+m

)
τn(t′)τm(t′′),

(1.4)

for all n,m ∈ Z, where Res
∑
fiz

i = f−1 and

ξ(t, z) =
∞∑
k=1

tkz
k and η(t, z) =

∞∑
k=1

1
k

∂

∂tk
z−k. (1.5)

Note that for all n,m ∈ 2Z these are exactly the equations for the Pfaffian tau-functions
obtained by Adler and van Moerbeke in [4]. The hierarchy of equations for all n,m ∈ 2Z
is called the DKP hierarchy in [9].
In fact using the KP boson-fermion correspondence one shows that

τE(t, q) = exp
(
1
2

∫∫
E2

X(t, y, z)eV (y)+V (z)sg(z − y)dydz
)

×
(
1 +

∫
E
X(t, w)eV (w)dw

)
· 1,
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where X(t, z) and X(t, y, z) are the vertex operators

X(t, z) = qz
q ∂

∂q exp(ξ(t, z)) exp(−η(t, z)),
X(t, y, z) = X(t, z)X(t, y)

= q2(z − y)(yz)q
∂
∂q exp(ξ(t, z) + ξ(t, y)) exp(−η(t, z)− η(t, y)).

(1.6)

The symplectic matrix integrals, which can be treated in a similar way, are described
in Section 8.

2 Symmetric matrix integrals

Let from now on m = 2n if m is even and m = 2n+1 if m is odd and recall formula (1.1):

τ̂Em(t) = cm

∫
Rm

|∆m(z)|
m−1∏
i=0

(
eV (t,zi)IE(zi)dzi

)
.

Denote by sg the sign-function and by Sm the permutation group of m letters. Using the
identity

∑
σ∈Sm

sg(σ)
n−1∏
j=0

sg(σ(2j + 1)− σ(2j)) = 2nn!,

we find

τ̂Em(t) = m!cm
∫
−∞<z0<z1<...<zm−1<∞

∆m(z)
m−1∏
i=0

(
eV (t,zi)IE(zi)dzi

)

=
m!cm
2nn!

∑
σ∈Sm

sg(σ)
n−1∏
j=0

sg
(
σ−1(2j + 1)− σ−1(2j)

)

×
∫
−∞<z0<z1<...<zm−1<∞

∆m(z)
m−1∏
i=0

(
eV (t,zi)IE(zi)dzi

)

=
m!cm
2nn!

∑
σ∈Sm

sg(σ)
∫
−∞<z0<z1<...<zm−1<∞

∆m(z)

×
n−1∏
j=0

sg
(
zσ−1(2j+1) − zσ−1(2j)

)m−1∏
i=0

(
eV (t,zi)IE(zi)dzi

)

=
m!cm
2nn!

∑
σ∈Sm

∫
−∞<zσ(0)<zσ(1)<...<zσ(m−1)<∞

∆m(z)

×
n−1∏
j=0

sg(z2j+1 − z2j)
m−1∏
i=0

(
eV (t,zi)IE(zi)dzi

)

=
(m)!cm
2nn!

∫
Rm

∆m(z)
n−1∏
j=0

sg(z2j+1 − z2j)
m−1∏
i=0

(
eV (t,zi)IE(zi)dzi

)
.

(2.1)
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If m = 2n is even we continue as follows:

τ̂E2n =
(2n)!c2n
2nn!

∑
σ∈S2n

sg(σ)
n−1∏
j=0

∫
R2

(
z
σ(2j)
2j z

σ(2j+1)
2j+1 eV (t,z2j)+V (t,z2j+1)

× IE(z2j)IE(z2j+1)sg(z2j+1 − z2j)dz2jdz2j+1

)

=
(2n)!c2n
2nn!

∑
σ∈S2n

sg(σ)
n−1∏
j=0

µσ(2j),σ(2j+1)(t) = (2n)!c2nPf ((µk,�(t))0≤k,�≤2n−1) .

(2.2)

This is formula (1.2) of the introduction, with the moments µij defined by (1.3).
If m = 2n+1 is odd, we use the following lemma, which can be found in Adler, Horozov

and van Moerbeke [1], to continue the calculation.

Lemma 2.1. Let A = (aij)0≤i,j≤2�+1 be a skew symmetric matrix, then

Pf(A) =
2�∑
k=0

(−)kAk,2�+1(Pf)((Aij)i,j �=k,2�+1).

Now,

τ̂E2n+1(t) =
(2n+ 1)!c2n+1

2nn!

∑
σ∈S2n+1

sg(σ)
∫

R2n+1

n−1∏
j=0

sg(z2j+1 − z2j)

×
2n∏
i=0

z
σ(i)
i

(
eV (t,zi)IE(zi)dzi

)

=
(2n+ 1)!c2n+1

2nn!

2n∑
k=0

∑
σ∈S2n+1,σ(2n)=k

sg(σ)
∫

R2n+1

zk2ne
V (t,z2n)IE(z2n)dz2n

×
n−1∏
j=0

sg(z2j+1 − z2j)
2n−1∏
i=0

z
σ(i)
i

(
eV (t,zi)IE(zi)dzi

)

=
(2n+ 1)!c2n+1

2nn!

2n∑
k=0

(−)k
∑
ρ∈S(k)

2n

sg(ρ)
∫

R2n+1

zk2ne
V (t,z2n)IE(z2n)dz2n

×
n−1∏
j=0

sg(z2j+1 − z2j)
2n−1∏
i=0

z
ρ(i+εk(i))
i

(
eV (t,zi)IE(zi)dzi

)
,

(2.3)

where ρ ∈ S
(k)
2n , the set of permutations of the numbers 1, 2, . . . , k − 1, k + 1, . . . , 2n, is

such that σ(j) = ρ(j + εk(j)), with εk(j) = 0 if j < k and = 1 if j ≥ k. To give an idea

of what we are doing, we give an example. If n = 2, k = 1 and σ =
(
0 1 2 3 4
4 3 0 2 1

)
,

then ρ =
(
0 2 3 4
4 3 0 2

)
and sg(σ) = −sg(ρ). Hence,
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τ̂E2n+1(t) =
(2n+ 1)!c2n+1

2nn!

2n∑
k=0

(−)k
∫

R

zk2n

(
eV (t,z2n)IE(z2n

)
dz2n)

∑
ρ∈S(k)

2n

sg(ρ)

×
n−1∏
j=0

∫
R2

(
z
ρ(2j+εk(2j))
2j z

ρ(2j+1+εk(2j+1))
2j+1 eV (t,z2j)+V (t,z2j+1)

× IE(z2j)IE(z2j+1)sg(z2j+1 − z2j)dz2jdz2j+1

)

= (2n+ 1)!c2n+1

2n∑
k=0

(−)k
∫

R

zk2n

(
eV (t,z2n)IE(z2n)dz2n

)
× Pf((µij(t))0≤i,j≤2n,i,j �=k)

= (2n+ 1)!c2n+1

2n∑
k=0

(−)kµk(t)Pf((µij(t))0≤i,j≤2n,i,j �=k)

= (2n+ 1)!c2n+1Pf(M2n+1(t)),

(2.4)

where

M2n+1(t) =




µ0(t)

(µij(t))0≤i,j≤2n
...
...

µ2n(t)
−µ0(t) · · · · · · −µ2n(t) 0




(2.5)

and µi(t) = (1, zi)t are the moments of the time-dependent symmetric inner product

(f, g)t =
∫
E
f(z)g(z)eV (t,z)dz. (2.6)

The symplectic matrix integrals, which can be treated in a similar way, are described in
Section 8.

3 The geometry of spinors and the BKP hierarchy

In this section we recall the results of [9].
Consider the vector space V = V + ⊕ V 0 ⊕ V −, where V ± =

⊕
i∈Z+ 1

2

Cψ±
i and V 0 = Cψ0

with symmetric bilinear form

(ψ0, ψ0) = 1, (ψ0, ψ
±
i ) = 0, (ψ±

i , ψ
±
j ) = 0, (ψ±

i , ψ
∓
j ) = δi,−j . (3.1)

Let C( V be the associated Clifford algebra, that is the quotient of the tensor algebra
over V by the ideal generated by relations

uv + vu = (u, v)1, where u, v ∈ V. (3.2)

These relations induce a natural Z/2Z decompostion C( V = C( V0 ⊕ C( V1. Denote by
(C( V )× the multiplicative group of invertible elements of the algebra C( V , by Pin V
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the subgroup of (C( V )× generated by all the elements a such that aV a−1 = V and let
Spin V = Pin V ∩ C(0V . A simple but for this paper important observation is that for
λ = +,−, both 1 +

∑
−N≤i≤M

ciψ0ψ
λ
i ∈ Spin V and

exp


 ∑

−N≤i<j≤M
cijψ

λ
i ψ

λ
j


 ∈ Spin V. (3.3)

We have a homomorphism T : Pin V → O(V ), g �→ Tg defined by (v ∈ V ):

Tg(v) = gvg−1 ∈ V.

Denote by U =
∑
j>0

(Cψ+
j + Cψ−

j ) + C(1 +
√
2ψ0) the subspace of C1 + V and let

F := F (V,U) = C( V/(C( V )U.

The space F (V,U) caries a structure of a C( V -module induced by left multiplication.
This module restricted to Pin V is called the spin module of the group Pin V . This
module remains irreducible when restricted to Spin V . Denote the image of 1 in F (V,U)
by |0〉, then

ψ±
j |0〉 = 0 if j > 0 and ψ0|0〉 = − 1√

2
|0〉.

By introducing the notion of charge as follows:

charge |0〉 = charge ψ0 = 0, charge ψ±
j = ±1,

the space F decomposes into charge sectors

F =
⊕
k∈Z

Fk.

Given f ∈ F , let

Ann f = {v ∈ V | vf = 0},

then the vacuum vector |0〉 ∈ F is characterized (up to a constant factor) among the
vectors of F by the property that

Ann |0〉 = U0 :=
∑
j>0

(Cψ+
j + Cψ−

j ).

Moreover, let g ∈ Pin V , then

Ann g|0〉 = Tg(Ann |0〉) = Tg(U0).

All maximal isotropic subspaces of V characterize the Spin V -group orbit. Let O =
Spin V · |0〉 be the Spin V -orbit of |0〉, one of the main observations of the paper [9] is the
following:
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Proposition 3.1. If τ ∈ F and τ �= 0, then τ ∈ O if and only if τ satisfies the equation

ψ0τ ⊗ ψ0τ +
∑
j∈Z+ 1

2

(ψ+
j τ ⊗ ψ−

−jτ + ψ−
j τ ⊗ ψ+

−jτ) =
1
2
τ ⊗ τ. (3.4)

This equation is called the fermionic BKP hierarchy. We will now rewrite these equa-
tions to a hierarchy of differential equations. For this we use the classical boson-fermion
correspondence [10]. Consider the following generating series, called charged fermionic
fields:

ψ±(z) =
∑
i∈ 1

2
+Z

ψ±
i z

−i− 1
2 . (3.5)

Then we have:

ψλ(y)ψµ(z) + ψµ(z)ψλ(y) = δλ,−µδ(y − z), λ, µ = ±, (3.6)

where

δ(y − z) = y−1
∑
n∈Z

(y
z

)n
.

We split up field φ(z) =
∑
i
φiz

i in its positive and negative part:

φ(z) = φ(z)+ + φ(z)−,

where

φ+ =
∑
i≥0

φiz
i and φ(z)− = φ(z)− φ(z)+,

Define the bosonic fields (ν ∈ C)

α(z) =
∑
k∈Z

αkz
−k−1 =: ψ+(z)ψ−(z) :,

Lν(z) =
∑
k∈Z

Lνkz
−k−2 =

1
2
: α(z)α(z) : +

(
1
2
− ν

)
∂z(α(z)),

Y ±(z) =
∑
k∈Z

Y ±
k z

−k−2 = ∂z(ψ±(z))ψ±(z),

(3.7)

where the normally ordered product of two fields is defined, as usual, by

: φ(y)ρ(z) := φ(y)+ρ(z)− ρ(z)φ(y)−.



Matrix Integrals and the Geometry of Spinors 295

Then one has (using Wick’s formula) (λ = ±):

[αk, ψλ(z), ] = λzkψλ(z),

[αk, Y λ(z), ] = 2λzkY λ(z),

[Lνk, ψ
λ(z)] =

(
zk+1∂z +

(
λ

(
ν − 1

2

)
+
1
2

)
(k + 1)zk

)
ψλ(z),

[Lνk, Y
λ(z)] =

(
zk+1∂z +

(
2λ
(
ν − 1

2

)
+ 2
)
(k + 1)zk

)
Y λ(z),

[Lνk, α(z)] =
(
zk+1∂z + (k + 1)zk

)
α(z) +

(
ν − 1

2

)
(k + 1)kzk−1,

[αk, α(z)] = kzk−1,

[Lνk, L
ν
� ] = (k − ()Lνk+� + δk,−�

k3 − k

12
cν ,

(3.8)

where cν = −12ν2 + 12ν − 2 and ψ0 commutes with all these bosonic operators.
Thus, the αk, Lνk form the oscillator algebra, respectively Virasoro algebra and

αk|0〉 = 0 for k ≥ 0,
Lνk|0〉 = 0 for k ≥ −1,
Y ±
k |0〉 = 0 for k ≥ 0.

(3.9)

The operator α0 is diagonalizable in F , with eigenspaces the charge sectors Fk, i.e.
α0fk = kfk for fk ∈ Fk. For that reason we call α0 the charge operator.
In order to express the fermionic fields ψλ(z) in terms of the oscillator algebra, we need

an additional operator Q on F defined by

Q|0〉 = ψ+
− 1

2

|0〉, Qψ+
k = ψ±

k∓1Q, Qψ0 = −ψ0Q.

Proposition 3.2. ([6, 7, 8])

ψ±(z) = Q±1z±α0 exp

(
∓
∑
k<0

αk
k
z−k
)
exp

(
∓
∑
k>0

αk
k
z−k
)
,

Y ±(z) = Q±2z±2α0 exp

(
∓2
∑
k<0

αk
k
z−k
)
exp

(
∓2
∑
k>0

αk
k
z−k
)
.

We now identify F with the space B = C[q, q−1, t1, t2, . . . ] via the vector space homor-
phism

σ : F→̃B

given by

σ
(
α−m1 . . . α−msQ

k|0〉
)
= m1m2 . . .mstm1tm2 . . . tmsq

k.

The transported charge is as follows

charge
(
p(t)qk

)
= k,
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and the transported charge decomposition is

B =
⊕
m∈Z

Bm, where Bm = C[t1, t2 . . . ]qm.

The transported operators ψ0, αm and Q on B are as follows:

σψ0σ
−1 = − 1√

2
(−)q

∂
∂q , W−m = σα−mσ

−1 = mtm,

Wm = σαmσ
−1 =

∂

∂tm
, W0 = σα0σ

−1 = q
∂

∂q
,

σQσ−1 = q.

(3.10)

Hence

σψ±(z)σ−1 = q±1z±q
∂
∂q e±ξ(t,z)e∓η(t,z),

σY ±(z)σ−1 = q±2z
±2q ∂

∂q e±2ξ(t,z)e∓2η(t,z),

where ξ(t, z) and η(t, z) are defined in (1.5). It is now straightforward to prove the following

Lemma 3.1. For y > z one has

σψλ(y)ψµ(z)σ−1 = (y − z)λµ1qλ+µyλq
∂
∂q zµq

∂
∂q eλξ(t,y)+µξ(t,z)e−λη(t,y)−µη(t,z),

σY λ(y)Y µ(z)σ−1 = (y − z)λµ4qλ2+µ2yλ2q
∂
∂q z

µ2q ∂
∂q eλ2ξ(t,y)+µ2ξ(t,z)e−λ2η(t,y)−µ2η(t,z).

Using the commutation relations (3.6) one immediately obtains the following conse-
quence of this lemma:

Corollary 3.1. For z0, z1, . . . , zm ∈ R distinct we have

σψ+(zm)ψ+(zm−1) · · ·ψ+(z1)ψ+(z0)σ−1

= qm+1∆m+1(z)
m∏
i=0

z
q ∂

∂q

i e

m∑
j=0

ξ(t,zj)

e
−

m∑
j=0

η(t,zj)

,

σY +(zm)Y +(zm−1) · · ·Y +(z1)Y +(z0)σ−1

= q2m+2∆4
m+1(z)

m∏
i=0

z
2q ∂

∂q

i e

m∑
j=0

2ξ(t,zj)

e
−

m∑
j=0

2η(t,zj)

.

We will now use the boson-fermion correspondence to rewrite the BKP hierarchy. No-
tice first that (3.4) is equivalent to

Res
(
ψ+(z)τ ⊗ ψ−(z)τ + ψ−(z)τ ⊗ ψ+(z)τ

)
=
1
2
(τ ⊗ τ − ψ0τ ⊗ ψ0τ) , (3.11)

where Res
∑
fiz

i = f−1. Now apply σ to (3.11). Writing σ(τ) =
∑
n∈Z

τn(t)qn, we obtain

for all n,m ∈ Z equation (1.4) as the coefficient of qn ⊗ qm.
The Spin group elements which we consider in the rest of the paper do not fit in the

algebraic framework of this section. However, we will need them to describe the symmetric
and symplectic matrix integrals as (generalized) tau-functions. Since all manipulations
with vertex operators, used there, are well defined and correct, it is clear what we mean
and we are doing.
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4 Pfaffian tau-functions

Let F (z) (resp. F (y, z)) be a (skew-symmetric) weight function on R (R2) and let

(f, g) =
∫

R

f(z)g(z)F (z)dz, respectively

〈f, g〉 =
∫∫

R2

f(y)g(z)F (y, z)dydz
(4.1)

be the corresponding symmetric (skew-symmetric) inner product. Consider the following
deformation of these inner products, which we assume to be the time-dependent t =
(t1, t2, · · · ):

(f, g)t =
∫

R

f(z)g(z)eξ(t,z)F (z)dz,

〈f, g〉t =
∫∫

R2

f(y)g(z)eξ(t,y)+ξ(t,z)F (y, z)dydz,
(4.2)

with ξ(t, z) =
∑
i
tiz
i as before. Notice that the inner products appearing in Section 1

and 2 are special cases of (4.2). Let

µi(t) = (1, zi)t and µi = µi(0) = (1, zi),

µij(t) = 〈yi, zj〉t = −µji(t) and µij = µij(0) = 〈yi, zj〉 = −µji

be the moments. Consider the following generalized Spin group element (see Section 3):

Gµ = exp(gµ) · fµ = exp


 ∑

−∞<j<i<0

µ−i− 1
2
,−j− 1

2
ψ+
j ψ

+
i


(1 +√

2
∑
k<0

µ−k− 1
2
ψ0ψ

+
k

)
.

We calculate its action on the vacuum vector |0〉, let

τF = exp


 ∑

−∞<j<i<0

µ−i− 1
2
,−j− 1

2
ψ+
j ψ

+
i


(1 +√

2
∑
k<0

µ−k− 1
2
ψ0ψ

+
k

)
|0〉

= exp


1
2

∑
i,j<0

µ−i− 1
2
,−j− 1

2
ψ+
j ψ

+
i


(1 +∑

k<0

µ−k− 1
2
ψ+
k

)
|0〉

=
∞∑
n=0

1
2nn!


∑
i,j<0

µ−i− 1
2
,−j− 1

2
ψ+
j ψ

+
i



n(

1 +
∑
k<0

µ−k− 1
2
ψ+
k

)
|0〉

=
∞∑
n=0

1
2nn!


∑
i,j<0

∫∫
R2

y−i−
1
2 z−j−

1
2F (y, z)dydzψ+

j ψ
+
i



n

×
(
1 +

∫
R

∑
k<0

w−k− 1
2ψ+
k F (w)dw

)
|0〉

(4.3)
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=
∞∑
n=0

1
2nn!

(∫∫
R2

ψ+(z)ψ+(y)F (y, z)dydz
)n(

1 +
∫

R

ψ+(w)F (w)dw
)
|0〉

=
∞∑
n=0

1
2nn!


∫

R2n

ψ+(z2n−1)ψ+(z2n−2) · · ·ψ+(z0)
n−1∏
j=0

F (z2j , z2j+1)dz2jdz2j+1




×
(
1 +

∫
R

ψ+(z2n)F (z2n)dz2n

)
|0〉

=
∞∑
m=0

τFm.

Using the boson-fermion correspondence and corollary 3.1 we rewrite this as follows, let
τF (t, q) = σ

(
τF
)
, then

τF (t, q) =
∞∑
n=0

1
2nn!


∫

R2n

∆2n(z)
n−1∏
j=0

eξ(t,z2j)+ξ(t,z2j+1)F (z2j , z2j+1)dz2jdz2j+1


 q2n

+
∞∑
n=0

1
2nn!

(∫
R2n+1

∆2n+1(z)eξ(t,z2n)F (z2n)dz2n

×
n−1∏
j=0

eξ(t,z2j)+ξ(t,z2j+1)F (z2j , z2j+1)dz2jdz2j+1

)
q2n+1

=
∞∑
m=0

τFm(t)q
m.

(4.4)

Then τF0 (t) = 1,

τF2n(t) =
1

2nn!

∫
R2n

∑
σ∈S2n

sg(σ)zσ(0)0 z
σ(1)
1 · · · zσ(2n−1)

2n−1

×
n−1∏
j=0

eξ(t,z2j)+ξ(t,z2j+1)F (z2j , z2j+1)dz2jdz2j+1

=
1

2nn!

∑
σ∈S2n

sg(σ)
n−1∏
j=0

µσ(2j),σ(2j+1)(t)

= Pf((µk,�(t))0≤k,�≤2n−1)

(4.5)

and

τE2n+1F (t) =
1

2nn!

∫
R2n+1

∑
σ∈S2n+1

sg(σ)zσ(0)0 z
σ(1)
1 · · · zσ(2n)2n F (z2n)

×
n−1∏
j=0

F (z2j , z2j+1)
2n∏
i=0

eξ(t,zi)dzi.

(4.6)
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A similar calculation as in (2.3) and (2.4) now shows that τF2n+1(t) = Pf(M2n+1(t)), where
M2n+1(t) is given by (2.5). Hence we have shown:

Theorem 4.1. Let µi(t), µij(t) be the moments of the symmetric, respectively skew-
symmetric innerproduct (·, ·)t) and 〈·, ·〉t, defined by (4.2). Let M2n(t) = (µij(t))0≤i,j≤2n−1

and

M2n+1(t) =




µ0(t)

(µij(t))0≤i,j≤2n
...
...

µ2n(t)

−µ0(t) · · · · · · −µ2n(t) 0



,

then

σ


exp


 ∑

−∞<j<i<0

µ−i− 1
2
,−j− 1

2
(0)ψ+

j ψ
+
i


(1 +√

2
∑
k<0

µ−k− 1
2
(0)ψ0ψ

+
k

)
|0〉




= exp
(
1
2

∫∫
R2

X(t, y, z)F (y, z)dydz
)(

1 +
∫

R

X(t, w)F (w)dw
)
· 1

=
∞∑
m=0

Pf(Mm)(t)qm,

where X(t, y, z) and X(t, w) are given by (1.6).

Since τF is an element in the spin group orbit of the vacuum vector, one has the
following consequence:

Corollary 4.1. The Pfaffian tau-functions τFm(t) = Pf(Mm(t)), m ∈ Z, satisfy the BKP
hierarchy (1.4).

Since fµ and exp(gµ) commute, we find that

τF2n+1 =
√
2
∑
k<0

µ−k− 1
2
ψ0ψ

+
k τ

F
2n.

Hence,

τF2n+1(t) =
∫

R

w2neξ(t,w)e−η(t,w)τF2n(t)F (w)dw

and τF2n+1(t) is completely determined by τ
F
2n(t)

5 Virasoro constraints

In this section we give a representation theoretical proof of the Virasoro constraints for
the symmetric matrix integrals obtained by Adler and van Moerbeke in [4]. Our proof is
along the lines of [3].
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As before, consider the matrix integral over symmetric matrices

τ̂Em(t) = m!cmτEm(t) =
∫
Sm(E)

e
Tr

(
V (Z)+

∞∑
1
tiZ

i

)
dZ,

integrated over the space Sm(E) of symmetric matrices with spectrum in E ⊂ R, where

E = disjoint union
r⋃
i=1

[c2i−1, c2i] (5.1)

and we assume that the potential V satisfies

V ′(z) =
g(z)
f(z)

=

∞∑
0
biz

i

∞∑
0
aizi

, (5.2)

with eV (z) decaying to 0 fast enough at the boundary of its support. Let

F (z) = eV (z)IE(z),

F (y, z) = eV (y)+V (z)sg(z − y))IE(y)IE(z),
(5.3)

be the corresponding weight functions. Comparing (2.1), (4.3) and (4.4) we find that

τ̂E2n(t) =
(2n)!c2n
2nn!

σ

((∫∫
R2

ψ+(z)ψ+(y)F (y, z)dydz
)n

|0〉
)
,

τ̂E2n+1(t) =
(2n)!c2n
2nn!

σ

((∫∫
R2

ψ+(z)ψ+(y)F (y, z)dydz
)n

×
(∫

R

ψ+(w)F (w)dw
)
|0〉
)
.

(5.4)

Consider the Virasoro algebra (see (3.7)) Lk := L1
k, k ∈ Z, with central charge −2.

From the commutation relations (3.8) we deduce

[Lk, ψ+(z)] = ∂z(zk+1ψ+(z)). (5.5)

Hence,[ ∞∑
�=0

a�Lk+�,

∫∫
R2

ψ+(z)ψ+(y)F (y, z)dydz

]

=
∞∑
�=0

a�

∫∫
R2

[
Lk+�, ψ

+(z)ψ+(y)F (y, z)dydz
]

=
∞∑
�=0

a�

∫∫
R2

F (y, z)
(
∂yy

k+�+1 + ∂zz
k+�+1

)
(ψ+(z)ψ+(y))dydz

=
∞∑
�=0

a�

∫∫
E2

(
∂yy

k+�+1 + ∂zz
k+�+1

)
ψ+(z)ψ+(y)eV (y)+V (z)sg(z − y)dydz

(5.6)
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+
∞∑
�=0

a�

∫∫
E2

(
yk+�+1V ′(y) + zk+�+1V ′(z)

)
ψ+(z)ψ+(y)eV (y)+V (z)sg(y − z)dydz

+ 2
∞∑
�=0

a�

∫∫
E2

(
zk+�+1δ(z − y)− yk+�+1δ(z − y)

)
ψ+(z)ψ+(y)eV (y)+V (z)dydz,

where we have used ∂zsg(z− y) = 2δ(z− y). The last term on the right-hand side of (5.6)
is equal to 0, the first to

∞∑
�=0

a�

2r∑
i=1

ck+�+1
i ∂ci

(∫∫
R2

ψ+(z)ψ+(y)F (y, z)dydz
)

and the second to

−
∞∑
�=0

b�

∫∫
E2

(
yk+�+1 + zk+�+1

)
ψ+(z)ψ+(y)eV (y)+V (z)sg(z − y)dydz

= −
∞∑
�=0

b�

∫∫
R2

[
αk+�+1, ψ

+(z)ψ+(y)
]
F (y, z)dydz

= −
∞∑
�=0

b�

[
αk+�+1,

∫∫
R2

ψ+(z)ψ+(y)F (y, z)dydz
]
.

From which we conclude that[ ∞∑
�=0

(
a�

2r∑
i=1

ck+�+1
i ∂ci − a�Lk+� − b�αk+�+1

)
,

∫∫
R2

ψ+(z)ψ+(y)F (y, z)dydz

]
= 0.

An analogous calculation also shows that[ ∞∑
�=0

(
a�

2r∑
i=1

ck+�+1
i ∂ci − a�Lk+� − b�αk+�+1

)
,

∫
R

ψ+(w)F (w)dw

]
= 0.

Using the action of the Virasoro and oscillator algebra on the vacuum vector (3.9), one
has that for all k ≥ −1 and m ≥ 0:

∞∑
�=0

(
a�

2r∑
i=1

ck+�+1
i ∂ci − a�Lk+� − b�αk+�+1

)(
τFm
)
= 0. (5.7)

Now recall from (3.10) that Wk = −kt−k, = q ∂∂q , =
∂
∂tk

for k < 0, k = 0, k > 0,
respectively. Define

W
(2)
k =

1
2
δ[ k2 ], k2

W 2
k
2

+
∑
i>[ k2 ]

Wk−iWi +
k + 1
2

Wk,

here
[
N
2

]
= Entier

(
N
2

)
, and let as in Section 1

τE(t, q) =
∞∑
m=0

τ̂Em(t)
m!cm

qm,

then using the boson-fermion correspondence we have the following result of Adler and
van Moerbeke [4]:
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Proposition 5.1. For all k ≥ −1 and all m ≥ 0,

∞∑
�=0

(
a�

2r∑
i=1

ck+�+1
i ∂ci − a�W

(2)
k+� − b�Wk+�+1

)(
τ̂Em(t)q

m
)
= 0,

∞∑
�=0

(
a�

2r∑
i=1

ck+�+1
i ∂ci − a�W

(2)
k+� − b�Wk+�+1

)(
τE(t, q)

)
= 0.

6 Fay identity of the BKP hierarchy

In this section we will prove the generalized Fay identity. We will use this identity to prove
a recursion relation between certain pfaffian wave functions, which we will define in the
next section.

Proposition 6.1. (Fay identity) Let t− t′ =
p∑
k=1

[zk]−
q∑
�=1

[y�], where [z] =
(
z
1 ,
z
2 ,
z
3 , . . .

)
,

then

1
2
(
1− (−1)n+m

)
τn(t)τm(t′)

=
p∑
k=1

zm−n+p−q
k τn−1(t− [zk])τm+1(t′ + [zk])

q∏
i=1

zk − yi

p∏
j=1,j �=k

zk − zj

+
∞∑
r=0

δn−m−p+q−1,r

r!

(
∂

∂z

)r

τn−1(t− [z])τm+1(t′ + [z])

q∏
i=1

z − yi

p∏
j=1

z − zj



∣∣∣∣∣
z=0

+
q∑
�=1

yn−m+q−p
� τn+1(t+ [y�])τm−1(t′ − [y�])

p∏
j=1

y� − zp

q∏
i=1,i�=�

y� − yi

+
∞∑
r=0

δm−n+p−q−1,r

r!

(
∂

∂z

)r

τn+1(t+ [z])τm−1(t′ − [z])

p∏
j=1

z − zj

q∏
i=1

z − yi



∣∣∣∣∣
z=0

.

Proof. Notice that equation (1.4) is equal to

1
2
(
1− (−1)n+m

)
τn(t)τm(t′)

=
1
2πi

∮
z=0

(
zn−mτn−1(t− [z])τm+1(t′ + [z])eξ(t,z

−1)−ξ(t′,z−1)

+ zm−nτn+1(t+ [z])τm−1(t′[z])eξ(t
′,z−1)−ξ(t,z−1)

)
dz,

(6.1)
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where the integration is taken along a contour around z = 0 and all z = yk and z = z�.

Since t− t′ =
p∑
k=1

[zk]−
q∑
�=1

[y�], we find that

eξ(t,z
−1)−ξ(t′,z−1) = zp−q

q∏
i=1

z − yi

p∏
j=1

z − zj

.

Hence the right-hand side of (6.1) is equal to

1
2πi

∮
z=0


zm−n+p−qτn−1(t− [z])τm+1(t′ + [z])

q∏
i=1

z − yi

p∏
j=1

z − zj

+ zn−m+q−pτn+1(t+ [z])τm−1(t′ − [z])

p∏
j=1

z − zj

q∏
i=1

z − yi


 dz.

Now using the fact that the integrand has poles only at z = 0 and all z = yk and z = z�,
we obtain the desired result.

As a particular case of Proposition 6.1 we take n = N +1, m = N −2, p = 1, z1 = u−1,
q = 0, t′ = t− [u−1] and observe that

∂τ(t± [z])
∂z

∣∣∣
z=0

= ±∂τ(t± [z])
∂t1

.

We thus obtain

Corollary 6.1.

τN−1(t)τN
(
t−
[
u−1
])
= τN (t)τN−1

(
t−
[
u−1
])

+ u−1

(
τN (t)

∂τN−1

(
t−
[
u−1
])

∂t1
− τN−1

(
t−
[
u−1
]) ∂τN (t)

∂t1

)

+ u−2τN+1(t)τN−2

(
t−
[
u−1
])
.

7 Wave functions and skew orthogonal polynomials

Introduce the following BKP wave functions:

Ψn(t, z) = znPn(t, z)eξ(t,z) := zn
τn
(
t−
[
z−1
])

τn+1(t)
. (7.1)

These are different wave functions than the one described in [9] and [4]. Let hn(t) =
(τn+1(t))2

τn(t)τn+2(t)
, using Corollary 6.1, one easily deduces the following recursion relation:

Ψn(t, z) = hn−1(t)
∂Ψn−1(t, z)

∂t1
+Ψn−2(t, z). (7.2)
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From now on let τn(t) = τFn (t) = Pf(Mn(t)) as in Section 4. It was shown in [1] that

P̃2n(t, z) := P2n(t, z)

=
1

τ2n+1(t)
Pf




1
(µij(t))0≤i,j≤2n z

...
z2n

−1 − z · · · · · · −z2n 0



, and

P̃2n+1(t, z) :=
h2n(t)
τ2n+1(t)

(z +
∂

∂t1
)τ2n+1P2n(t, z)

=
h2n(t)
τ2n+1(t)

Pf




1 µ0,2n+1(t)
(µij(t))0≤i,j≤2n−1 z µ1,2n+1(t)

...
...

z2n−1 µ2n−1,2n+1(t)

−1 · · · · · · −z2n−1 0 −z2n+1

−µ0,2n+1(t) · · · · · · −µ2n−1,2n+1(t) z2n+1 0



,

form a set skew orthonormal polynomials {P̃n(t, z)}n≥0 with respect to the time-dependent
skew symmetric innerproduct 〈·, ·〉t, defined in (4.2), i.e.

〈P̃2m, P̃2n〉t = 〈P̃2m+1, P̃2n+1〉t = 0,

〈P̃2m, P̃2n+1〉t = −〈P̃2n+1, P̃2m〉t = δnm.

Now using (7.2), one sees that

P̃2n+1(t, z)− h2n(t)
∂ log τ2n+1(t)

∂t1
P̃2n(t, z) = P2n+1(t)− P2n−1(t).

Let Q2n(t, z) = P2n(t, z) and Q2n+1(t, z) = P2n+1(t)−P2n−1(t), we thus have the following
result:

Proposition 7.1. Let τn(t) = τFn (t) = Pf(Mn(t)), then the polynomials

Q2n(t, z) := z2n τ2n
(
t−
[
z−1
])

τ2n+1(t)

=
1

τ2n+1(t)
Pf




1
(µij(t))0≤i,j≤2n z

...
z2n

−1 − z · · · · · · −z2n 0



, and
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Q2n+1(t, z) := z2n+1 τ2n+1

(
t−
[
z−1
])

τ2n+2(t)
− z2n−1 τ2n−1

(
t−
[
z−1
])

τ2n(t)

=
1

τ2n(t)τ2n+2(t)
Pf




1 N0,2n(t)
(µij(t))0≤i,j≤2n−1 z N1,2n(t)

...
...

z2n−1 N2n−1,2n(t)

−1 · · · · · · −z2n−1 0 −N2n(t, z)
−N0,2n(t) · · · · · · −N2n−1,2n(t) N2n(t, z) 0



,

where

Nj,2n(t) = µj,2n(t)
∂τ2n+1(t)

∂t1
+ µj,2n+1(t)τ2n+1(t), for 1 ≤ j < 2n,

N2n(t, z) = z2n∂τ2n+1(t)
∂t1

+ z2n+1τ2n+1(t)

form a set skew orthonormal polynomials with respect to the time-dependent skew-sym-
metric innerproduct 〈·, ·〉t. Moreover,

Q2n+1(t, z) = h2n(t)
(
z +

∂

∂t1

)
Q2n(t, z)

Q2n(t, z) =
n∑
k=1

(
k∑
�=1

h2n−2�+1

)(
z +

∂

∂t1

)
Q2n−2k+1(t, z).

8 Symplectic matrix integrals

In this section we will treat the symplectic matrix integrals, i.e., integrals of the form:

∫
T2n(E)

e
2Tr

(
V (Z)+

∞∑
1
tiZ

i

)
dZ,

where dZ denotes the Haar measure

dZ =
N∏
1

dZk
∏
k≤�

dZ
(0)
k� dZ

(0)
k� dZ

(1)
k� dZ

(1)
k� ,

on the space T2N (E) of self-dual N ×N Hermitean matrices with quaternionic entries and
spectrum in E ⊂ R; these particular matrices can be realized as the space of 2N × 2N
matrices with entries Z(i)

�k ∈ C

T2N =

{
Z = (Zk�)1≤k,�≤N |Zk� =

(
Z

(0)
k� Z

(1)
k�

−Z(1)
k� Z

(0)
k�

)
with Z�k = Z


k�

}
,
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It is shown in [5] that

τ̂E2n(t) =
∫
T2n(E)

e
2Tr

(
V (Z)+

∞∑
1
tiZ

i

)
dZ

=
∫
En

∆4
n(z)

n∏
i=1


e

(
V (z)+

∞∑
1
tiz

i

)
dzi




= n!Pf((µij(t))0≤i,j≤2n−1),

where the µij(t) are the moments of the skew-symmetric innerproduct

〈f, g〉t =
∫

R

(
∂f(z)
∂z

g(z)− ∂g(z)
∂z

f(z)
)
e2ξ(t,z)F (z)dz, (8.1)

and F (z) = e2V (z)IE(z). We will now show that the generating series

τE(t, q) =
∞∑
n=0

τE2n(t)q
2n, with τ̂E2n(t) = n!τE2n(t)

of these Pfaffians is again an element in the Spin group orbit of the vacuum vector.
Let F (z) be a weight function on R and introduce the following symmetric, respectively

skew-symmetric inner product:

(f, g) =
∫

R

f(z)g(z)F (z)dz, respectively

〈f, g〉 =
∫

R

(
∂f(z)
∂z

g(z)− ∂g(z)
∂z

f(z)
)
F (z)dz

(8.2)

with moments µi = (zi, 1) respectively µij = 〈zi, zj〉. Notice that 〈·, ·〉t, given by (8.1), is
a time-dependent t = (t1, t2, · · · ) deformation of 〈·, ·〉. In a similar way is

(f, g)t =
∫

R

f(z)g(z)e2ξ(t,z)F (z)dz, (8.3)

a the time-dependent deformation of (·, ·).
To describe this symplectic case, we consider the generalized Spin group element

Hµ = exp(hµ) = exp


 ∑
j<i<0

µ−j− 1
2
,−i− 1

2
ψ+
j ψ

+
i




= exp


 ∑
j<i<0

(i− j)µ−i−j−2ψ
+
j ψ

+
i


 = exp


∑
i,j<0

(
−j − 1

2

)
µ−i−j−2ψ

+
j ψ

+
i
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and calculate its action on the vacuum vector:

τF = exp


 ∑
j<i<0

µ−j− 1
2
,−i− 1

2
ψ+
j ψ

+
i


 |0〉

=
∞∑
n=0

1
n!


∑
i,j<0

(
−j − 1

2

)
µ−i−j−2ψ

+
j ψ

+
i



n

|0〉

=
∞∑
n=0

1
n!


∑
i,j<0

∫
R

z−i−j−2F (z)dz
(
−j − 1

2

)
ψ+
j ψ

+
i



n

|0〉

=
∞∑
n=0

1
n!

(∫
R

Y +(z)F (z)dz
)n

|0〉

=
∞∑
n=0

1
n!

∫
Rn

Y +(zn−1)Y +(zn−2) · · ·Y +(z0)
n−1∏
j=0

F (zj)dzj |0〉

=
∞∑
n=0

τF2n.

(8.4)

Use again the boson-fermion correspondence and corollary 3.1. Let τF (t, q) = σ(τF ), then

τF (t, q) =
∞∑
n=0

1
n!

∫
Rn

∆4
n(z)

n−1∏
j=0

e2ξ(t,zj)F (zj)dzjq2n =
∞∑
n=0

τF2n(t)q
2n (8.5)

Let as in Section 5 E satisfy (5.1) and assume that F (z) = e2V (z)IE(z), where V (z) satis-
fies (5.2). Let L(z) = L0(z) (c.f. (3.7) ) be the Virasoro field. Although this field has
central charge −2, note that it is another Virasoro field than the one one considers in the
symmetric case. In a similar way as Section 5 one shows that[ ∞∑

�=0

(
a�

2r∑
i=1

ck+�+1
i ∂ci − a�Lk+� − b�αk+�+1

)
,

∫
R

Y +(w)F (w)dw

]
= 0.

Which leeds to the following result.

Theorem 8.1. Let µij(t) be the moments of the skew-symmetric inner product (see (8.1))
〈·, ·〉t with weight function F (z) = e2V (z)IE(z) and let

Y (t, z) = q2z
2q ∂

∂q exp

(
2

∞∑
i=1

tiz
i

)
exp

(
−2

∞∑
i=1

z−i

i

∂

∂ti

)
,

then

∞∑
n=0

1
n!
τ̂E2n(t)q

2n = σ


exp


 ∑
j<i<0

µ−j− 1
2
,−i− 1

2
(0)ψ+

j ψ
+
i


 |0〉




= exp
(∫

R

Y (t, z)F (z)dz
)
· 1.



308 J van de Leur

All τE2n(t) satisfy the DKP hierarchy, i.e., the BKP hierarchy but only for the even tau-
functions. Moreover, let

W
(2)
k =

1
2
δ[ k

2
], k

2
W 2

k
2

+
∑
i>[ k

2
]

Wk−iWi −
k + 1
2

Wk,

then for all k ≥ −1 and all n ≥ 0,

∞∑
�=0

(
a�

2r∑
i=1

ck+�+1
i ∂ci − a�W

(2)
k+� − b�Wk+�+1

)(
τ̂E2n(t)q

2n
)
= 0.

9 Consequences of the Virasoro constraints

In this section we will describe some consequences of the Virasoro constraints. First
consider the following. Let τ = g|0〉, u ∈ Ann τ and let A be an operator, such that
[A, V ] ⊂ V and Aτ = 0, then

0 = Auτ = [A, u]τ + uAτ = [A, u]τ

and thus [A, u] ∈ Ann τ . The operators (k ≥ −1)

Ak :=
∞∑
�=0

(
a�

2r∑
i=1

ck+�+1
i ∂ci − a�Lk+� − b�αk+�+1

)

satisfy this condition for τ = τF in both symmetric and symplectic cases and for τ g :=
∞∑
m=0

τF2mq
2m = exp(gµ)|0〉 in the symmetric case.

First, we consider the symmetric case. We calculate Ann τF = TGµ(Ann |0〉) =
TGµ(U0). Since for all k > 0 and all (

Tfµ(ψ−
k ) = ψ−

k +
√
2µk− 1

2
ψ0 − µk− 1

2

∑
i<0

µ−i− 1
2
ψ+
i ,

Tfµ(ψ+
k ) = ψ+

k , [g
µ, ψ+

� ] = [gµ, ψ0] = 0 and [gµ, ψ−
k ] =

∑
i<0

µk− 1
2
,−i− 1

2
ψ+
i , we find that

Ann τF =
∑
k>0

Cψ+
k + CΨ−

k ,

with

Ψ−
k = ψ−

k +
√
2µk− 1

2
ψ0 +

∑
i>0

(
µk− 1

2
,i− 1

2
− µk− 1

2
µi− 1

2

)
ψ+
−i.

In simmilar way one obtains

Ann τ g =
∑
k>0

Cψ+
k + CΦ−

k ,
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with

Φ−
k = ψ−

k +
∑
i>0

µk− 1
2
,i− 1

2
ψ+
−i

In the symmetric case we have:

[αk, ψ±
i ] = ±ψ±

i+k, [Lk, ψ±
i ] = −i− k

2
± k + 1

2
.

Since,

[Ak, ψ−
j ] =

∑
�=0

(
j + k + (+

1
2

)
a�ψ

−
j+k+� + b�ψj+k+�+1,

one has that

[Ak,Ψ−
j ] =

∑
�=0

(
j + k + (+

1
2

)
a�Ψ−

j+k+� + b�Ψj+k+�+1

+ part which contains only ψ+
i ’s with i > 0.

(9.1)

Now comparing the coefficient on both sides of ψ0, we deduce the following equation for
all k ≥ −1:

∞∑
�=0

a�

2r∑
p=1

ck+�+1
p

∂µj
∂cp

=
∞∑
�=0

(j + k + (+ 1)a�µj+k+� + b�µj+k+�+1.

The same equation (9.1) holds with Ψ−
j replaced by Φ−

j . Now consider the coefficient of
ψ+
−i for i > 0 on both sides. This leads to:

∞∑
�=0

a�

2r∑
p=1

ck+�+1
p

∂µj,i
∂cp

=
∞∑
�=0

a� ((i+ k + (+ 1)µj,i+k+� + (j + k + (+ 1)µj+k+�,i)

+ b� (µj,i+k+�+1 + µj+k+�+1,i) .

In the symplectic case we find:

Ann τF =
∑
k>0

Cψ+
k + CΘ−

k ,

with

Θ−
k = ψ−

k +
∑
i>0

(i− k)µk+i−2ψ
+
−i.

In this case

[αk, ψ±
i ] = ±ψ±

i+k, [Lk, ψ±
i ] = −i− k

2
∓ k + 1

2
,

which leads to the following result for the symplectic case:
∞∑
�=0

a�

2r∑
p=1

ck+�+1
p

∂µj
∂cp

=
∞∑
�=0

(j + k + (+ 1)a�µj+k+� + 2b�µj+k+�+1

and
∞∑
�=0

a�

2r∑
p=1

ck+�+1
p

∂µj,i
∂cp

=
∞∑
�=0

a� (iµj,i+k+� + jµj+k+�,i) + b� (µj,i+k+�+1 + µj+k+�+1,i) .
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