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A System of Four ODEs: The Singularity Analysis
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Abstract

The singularity analysis is carried out for a system of four first-order quadratic ODEs
with a parameter, which was proposed recently by Golubchik and Sokolov. A transfor-
mation of dependent variables is revealed by the analysis, after which the transformed
system possesses the Painlevé property and does not contain the parameter.

Recently, Golubchik and Sokolov [1] proposed the following system of four first-order
quadratic ODEs:

pt = p2 − pr − qs,

qt = apq + (a − 2)rq,
rt = r2 − pr − qs,

st = (1− a)ps + (3− a)rs,

(1)

where a is a parameter. It was pointed out in [1] that the system (1), though integrable by
quadratures, probably does not pass the Painlevé–Kovalevskaya test for generic a. More
recently, Leach, Cotsakis and Flessas [2] drew a conclusion that the system (1) does not
possess the Painlevé property for any value of the parameter a.

In the present note, we give our version of the singularity analysis of the system (1).
The analysis reveals a very simple transformation of the variables q and s, after which the
transformed system possesses the Painlevé property and does not contain the parameter a.

Let us carry out the singularity analysis for the system (1), following the Ablowitz–
Ramani–Segur algorithm [3] (see also [4]). Substituting into (1) the expansions of p, q, r,
s near φ(t) = 0, φt = 1,

p = p0φ
α + · · ·+ pnφn+α + · · · , q = q0φ

β + · · ·+ qnφn+β + · · · ,
r = r0φ

γ + · · ·+ rnφn+γ + · · · , s = s0φ
δ + · · ·+ snφn+δ + · · · , (2)

we find the following three branches (i.e. the admissible choices of α, β, γ, δ and p0, q0, r0,
s0 with the corresponding positions n of resonances), besides the evident branch governed
by the Cauchy theorem (α = β = γ = δ = 0, ∀ p0, q0, r0, s0):

α = −1, β = −a, γ = 0, δ = a − 1,
p0 = −1, r0 = q0s0, ∀ q0, s0, (n + 1)n2(n − 1) = 0;

(3)
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α = 0, β = 2− a, γ = −1, δ = a − 3,
r0 = −1, p0 = q0s0, ∀ q0, s0, (n + 1)n2(n − 1) = 0;

(4)

α = −1, β = 2− 2a, γ = −1, δ = 2a − 4,
p0 = r0 = −1, q0s0 = −1, ∀ q0 xor ∀ s0, (n + 1)2n(n − 2) = 0.

(5)

We see from (3), (4), (5) that the system (1) may possess the Painlevé property only
if the parameter a is integer. But the positions of resonances are integer and independent
of a in all the branches, and this suggests that the expansions (2) do not contain terms
with noninteger n. Moreover, the expansions (2) are free from logarithmic terms, as we
can prove by checking the consistency of recursion relations for pn, qn, rn, sn, n = 0, 1, . . .,
obtainable from (1). We have the following:

p1 = 0, q1 = (a − 2)q2
0s0, s1 = (3− a)q0s

2
0, ∀ r1,

for (3);

r1 = 0, q1 = aq2
0s0, s1 = (1− a)q0s

2
0, ∀ p1,

for (4);

p1 = q1 = r1 = s1 = 0, p2 = r2 = −s0q2 − q0s2,

(a − 2)s0q2 + (a − 1)q0s2 = 0, ∀ q2 xor ∀ s2,

for (5). Consequently, in all the branches, solutions of (1) are represented by the expansions

p = φα
∞∑

n=0

pnφn, q = φβ
∞∑

n=0

qnφn, r = φγ
∞∑

n=0

rnφn, s = φδ
∞∑

n=0

snφn,

where α, γ = −1, 0, and the functions β(a) and δ(a) vary from branch to branch. There-
fore we can hope to improve the analytic properties of the system (1) by an appropriate
transformation of the dependent variables q and s.

Let us consider a variable z(t),

z = qxsy, (6)

where x and y are constants, and study its dominant behavior z = z0φ
ε + · · · near φ = 0

in the branches (3), (4), (5). We have ε = i,

i = −ax + (a − 1)y, (7)

in the branch (3); ε = j,

j = (2− a)x + (a − 3)y, (8)

in the branch (4); ε = k,

k = (2− 2a)x + (2a − 4)y, (9)

in the branch (5). Since k = i + j due to (7), (8), (9), k will be integer for any integer i
and j. And, for any integer i and j, the variable z (6) will possess a good dominant
behavior in each of the branches (3), (4), (5), if we set

x =
1
2
(a − 3)i − 1

2
(a − 1)j, y =

1
2
(a − 2)i − 1

2
aj (10)
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due to (7), (8).
Which choice of the integers i and j to prefer? According to (1) and (6),

zt = (−ip − jr)z,

and it seems natural to choose i = −1, j = 0 or i = 0, j = −1. Denoting z|i=−1,j=0 as u,
and z|i=0,j=−1 as v, we find from (6), (10) that

u = q
1
2
(3−a)s

1
2
(2−a), v = q

1
2
(a−1)s

1
2
a.

In the new variables p, r, u, v, the system (1) changes into

pt = p2 − pr − uv,

rt = r2 − pr − uv,

ut = pu,

vt = rv.

(11)

The system (11) possesses the Painlevé property and does not contain the parameter a.
Also, the three constants of motion of the system (1), given in [1] in the variables p, q, r,
s, become more simple in the new variables p, r, u, v:

c1 = pr + uv, c2 =
p − r

uv
, c3 =

r2 − pr − uv

v2
.

The constant of motion c4 = (p2 − pr − uv)/u2 simply follows from c3 via the evident
symmetry p ↔ r, u ↔ v of the system (11), and one can use any three of c1, c2, c3, c4 as
mutually independent.

Obviously, the analytic properties of the Golubchik–Sokolov system (1) do not con-
tradict to the empirically well known interrelation between the Painlevé property and
the integrability of ODEs and PDEs. This system is similar to the sine-Gordon equa-
tion, which also does not possess the Painlevé property until a simple transformation is
made [5].
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