KAM Theorem for the Nonlinear Schrödinger Equation

Benoît GRÉBERT † and Thomas KAPPELER ‡

- [†] Département de Mathématiques, UMR 6629, Université de Nantes 2 rue de la Houssinière, BP 92208, 44322 Nantes cedex 3 France E-mail: grebert@math.univ-nantes.fr
- [‡] Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190 CH-8057 Zürich, Switzerland E-mail: tk@math.unizh.ch

Abstract

We prove the persistence of finite dimensional invariant tori associated with the defocusing nonlinear Schrödinger equation under small Hamiltonian perturbations. The invariant tori are not necessarily small.

1 Introduction

Consider the defocusing nonlinear Schrödinger equation on a circle of unit length,

$$i\partial_t \varphi = -\partial_{xx} \varphi + 2|\varphi|^2 \varphi \qquad (t \in \mathbb{R}, x \in S^1).$$
(1)

It is a completely integrable Hamiltonian system of infinite dimension with phase space $H^N \equiv H^N(S^1, \mathbb{C})$ $(N \in \mathbb{R}_{>1})$ and Hamiltonian $H_0 \equiv H_0(\varphi, \overline{\varphi})$. Here

$$H^N\left(S^1,\mathbb{C}\right) = \left\{ f(x) = \sum_{k \in \mathbb{Z}} \hat{f}(k) e^{2i\pi kx} \mid \| f \|_N < \infty \right\},\$$

where

$$\parallel f \parallel_N^2 := \sum_{k \in \mathbb{Z}} (1 + |k|)^{2N} |\hat{f}(k)|^2$$

and

$$H_0(\varphi,\overline{\varphi}) := \int_0^1 \left(|\varphi_x|^2 + |\varphi|^4 \right) dx.$$

The Poisson structure is given by the regular Poisson bracket

$$\{F,G\} := i \int_{S^1} \left(\frac{\partial F}{\partial \varphi(x)} \frac{\partial G}{\partial \overline{\varphi}(x)} - \frac{\partial F}{\partial \overline{\varphi}(x)} \frac{\partial G}{\partial \varphi(x)} \right) dx,$$

Copyright © 2001 by B Grébert and T Kappeler

where F, G are functionals on $L^2 \equiv L^2(S^1, \mathbb{C})$ of class C^1 . When written as a Hamiltonian system, (1) takes the form

$$\partial_t \varphi = \{H_0, \varphi\} = -i \frac{\partial H_0}{\partial \overline{\varphi}}.$$
(2)

Our aim is to prove the existence of quasiperiodic solutions, not necessarily small, of small Hamiltonian perturbations of (2), i.e. of the equation

$$\partial_t \varphi = -i \frac{\partial H}{\partial \overline{\varphi}},\tag{3}$$

where

$$H(\varphi,\overline{\varphi}) = H_0(\varphi,\overline{\varphi}) + \varepsilon K(\varphi,\overline{\varphi}), \qquad \varepsilon \quad \text{small.}$$
(4)

To obtain solutions which are not necessarily close to zero we use a method developed in [11] for the KdV equation: First we prove the existence of global Birkhoff variables $(x_j, y_j)_{j \in \mathbb{Z}}$ (see Section 2). In these new variables, the NLS equation takes the canonical form

$$\begin{cases} \dot{x}_k = -w_k y_k, \\ \dot{y}_k = w_k x_k, \end{cases}$$
(5)

where (`) denotes the time derivative and $w(I) = (w_k(I))_{k \in \mathbb{Z}}$ is the sequence of frequencies which depend only on the actions $I_j = (x_j^2 + y_j^2)/2, j \in \mathbb{Z}$.

We then verify non-resonance conditions for the frequencies of the unperturbed system (2) reduced by certain symmetries which allow us to apply a refined version [15] of a KAM-theorem of Kuksin [12].

The results of this work have been anounced in [6] and proved in a series of articles [7, 8, 9] and [10].

2 Existence of global Birkhoff variables

It is well known that NLS admits a Lax pair representation

$$\frac{\partial L}{\partial t} = [L, M] := LM - ML,\tag{6}$$

where

$$L = L(\varphi) := i \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{d}{dx} + \begin{pmatrix} 0 & \varphi \\ \overline{\varphi} & 0 \end{pmatrix}$$
(7)

is the Zakharov–Shabat operator and M is a rather complicated operator given in [4]. As a consequence, the periodic spectrum of $L(\varphi)$, $\operatorname{spec}(\varphi) := \{\lambda \in \mathbb{C}, \exists F \in H^1_{\operatorname{loc}}(\mathbb{R}, \mathbb{C}^2) \text{ with} F \neq 0, \ L(\varphi)F = \lambda F \text{ and } F(x+2) = F(x), \ x \in \mathbb{R}\}$, remains invariant under the NLS flow. The periodic spectrum consists of two interlacing sequences $(\lambda_k^+(\varphi))_{k\in\mathbb{Z}}, (\lambda_k^-(\varphi))_{k\in\mathbb{Z}}$ of real numbers satisfying $\lambda_k^{\pm} \sim k\pi$ (|k| large) and $\lambda_k^- \leq \lambda_k^+ < \lambda_{k+1}^-, \ k \in \mathbb{Z}$ (cf [14], [5]). Furthermore, $\operatorname{spec}(\varphi)$ is a complete set of integrals for the NLS equation (cf. [4]). This fact is used to prove the following Theorem (cf. [1] and [7]), **Theorem 1.** For any $N \ge 1$, there exists a bianalytic, bijective symplectomorphism

$$\Phi: l_N^2\left(\mathbb{Z}, \mathbb{R}^2\right) \to H^N\left(S^1, \mathbb{R}^2\right)$$

such that $(x_j, y_j)_{j \in \mathbb{Z}} = \Phi^{-1}(\varphi)$ are Birkhoff coordinates for NLS, i.e. $I_j = \frac{1}{2} \left(x_j^2 + y_j^2 \right)$ are action and $\theta_j = \operatorname{arctg} \left(\frac{y_j}{x_j} \right)$ are angle variables.

Here

$$l_N^2\left(\mathbb{Z}, \mathbb{R}^2\right) := \{(a_j, b_j)_{j \in \mathbb{Z}}, ||(a_j)_{j \in \mathbb{Z}}||_N + ||(b_j)_{j \in \mathbb{Z}}||_N < +\infty\},\$$

where

$$||(a_j)_{j\in\mathbb{Z}}||_N^2 = \sum_{j\in\mathbb{Z}} (1+|j|)^{2N} |a_j|^2,$$

and $l_N^2\left(\mathbb{Z},\mathbb{R}^2\right)$ is endowed with the canonical symplectic structure

$$\Omega((a_j, b_j)_{j \in \mathbb{Z}}, (x_j, y_j)_{j \in \mathbb{Z}}) = 2\sum_{j \in \mathbb{Z}} a_j y_j - b_j x_j$$

In action angle variables, the Hamiltonian H_0 depends only on the actions, $H_0(\varphi, \overline{\varphi}) = \mathcal{H}(I)$, and NLS is equivalent to the system (5), where $w_k(I) = \frac{\partial \mathcal{H}}{\partial I_k}(I)$.

In particular, given $I \in l_{2N}^1(\mathbb{Z}, \mathbb{R}_+)$ with finite support,

$$\mathcal{T}_I = \Phi\left(\left\{(x_j, y_j)_{j \in \mathbb{Z}}, \ x_j^2 + y_j^2 = 2I_j, \ j \in \mathbb{Z}\right\}\right)$$
(8)

is an invariant set diffeomorphic to a torus whose dimension is $\sharp\{k \in \mathbb{Z}, I_k \neq 0\}$.

The solution $\phi(x,t) \equiv \varphi_t(x)$ of the initial value problem for NLS, with initial profile $\varphi_0 = \Phi\left(\left(\sqrt{2I_j}e^{i\theta_j}\right)_{j\in\mathbb{Z}}\right)$ in $H^N\left(S^1,\mathbb{C}\right)$, is given by

$$\varphi_t = \Phi\left(\left(\sqrt{2I_j} \ e^{i(\theta_j + tw_j(I))}\right)_{j \in \mathbb{Z}}\right)$$

3 KAM Theorem for NLS

An asymptotic expansion shows that the frequencies have asymptotic resonances,

$$w_{\pm k}(I) \sim 4\pi^2 k^2$$
 for k large.

In order to control their effect on perturbed equations we impose symmetry conditions on the perturbation. These conditions (see [8]) allow to consider as phase spaces the subspaces $H^N_{\alpha}(S^1, \mathbb{C}), \alpha \in \mathbb{R}$, defined by,

$$H^{N}_{\alpha}\left(S^{1},\mathbb{C}\right) := \Phi\left(l^{2}_{N;\alpha}\left(\mathbb{Z},\mathbb{R}^{2}\right)\right),\tag{9}$$

where $\left(\sqrt{2I_j}e^{i\theta_j}\right)_{j\in\mathbb{Z}} \in l_{N;\alpha}^2$ iff $\left(\sqrt{2I_j} e^{i\theta_j}\right)_{j\in\mathbb{Z}} \in l_N^2$ and satisfies

$$I_{-j} = I_j \qquad \forall j \ge 1, \tag{10}$$

and

$$\theta_{-j} \equiv \theta_j + \alpha \pmod{2\pi} \quad \forall j \ge 0 \quad \text{with} \quad I_j \ne 0.$$
(11)

(Notice that for $\alpha \neq 0 \pmod{2\pi}$, (11) implies that $I_0(\varphi) = 0$ for all $\varphi \in H^N_{\alpha}$.)

One verifies that the subspaces $H_{\alpha}^{N}(S^{1},\mathbb{C})$ are invariant under the NLS-flow by showing (cf. [9]) that the symmetries of the NLS Hamiltonian $\mathcal{H}(I)$ imply that $\mathcal{H}(\mathcal{J}(I)) = \mathcal{H}(I)$, where $\mathcal{J}(I)_{k} = I_{-k} \forall k \in \mathbb{Z}$. As a consequence, the frequencies $w_{j} = \frac{\partial \mathcal{H}}{\partial I_{j}}$ are symmetric at points where $\mathcal{J}(I) = I$.

Moreover, in [8] we provide the following characterization of $H^N_{\alpha}(S^1,\mathbb{C})$,

$$H^{N}_{\alpha}\left(S^{1},\mathbb{C}\right) = \left\{\varphi \in H^{N}\left(S^{1},\mathbb{C}\right) \mid e^{i\alpha}\check{\varphi} \equiv \varphi\right\}$$

where $\check{\varphi}(x) = \varphi(-x)$. In particular, $H_{\pi}^N \cap C^{\infty}$ (resp. $H_0^N \cap C^{\infty}$) is the phase-space of $\varphi \in H^N \cap C^{\infty}$ satisfying generalized Dirichlet (resp. Neumann) conditions, i.e. $\partial_x^{2k}\varphi(0) = \partial_x^{2k}\varphi(1) = 0$ (resp. $\partial_x^{2k+1}\varphi(0) = \partial_x^{2k+1}\varphi(1) = 0$) $\forall k \in \mathbb{Z}$. By a slight abuse of notation, the restriction of Φ to $l_{N,\alpha}^2(\mathbb{Z}, \mathbb{R}^2)$ is again denoted by Φ .

For $\alpha \in \mathbb{R}/2\pi\mathbb{Z}$, a finite subset $A \subseteq \mathbb{Z}_{\geq 0}$ (with $0 \notin A$ if $\alpha \neq 0$) and $I_A \in (\mathbb{R}_{>0})^{|A|}$ we denote by $T_{I_A}^{\alpha}$ the |A| dimensional torus of the model space $l^2(\mathbb{Z}; \mathbb{R}^2)$, defined by

$$T_{I_A}^{\alpha} := \left\{ \left(\sqrt{2J_j} e^{i\theta_j} \right)_{j \in \mathbb{Z}} | J_j = J_{-j} = I_j, \ \forall j \in A; \\ J_j = J_{-j} = 0, \ \forall j \notin A; \ \theta_j = \theta_{-j} + \alpha, \ \forall j \in A \right\}$$
(12)

and by $\mathcal{T}_{I_A}^{\alpha}$ the |A| dimensional torus in H_{α}^N , invariant under NLS,

$$\mathcal{T}^{\alpha}_{I_A} := \Phi\left(T^{\alpha}_{I_A}\right). \tag{13}$$

For $\Gamma \subseteq (\mathbb{R}_{>0})^{|A|}$ compact and of positive Lebesgue measure, introduce

$$\mathcal{T}^{\alpha}_{\Gamma} := \cup_{I_A \in \Gamma} \mathcal{T}^{\alpha}_{I_A}. \tag{14}$$

The set $\mathcal{T}_{\Gamma}^{\alpha}$ consists of symmetric 2|A|-gap potentials (if $0 \notin A$) or (2|A|-1)-gap potentials (if $0 \in A$), i.e potentials $\varphi \in H^0_{\alpha}$ with $\lambda_j^+(\varphi) \neq \lambda_j^-(\varphi)$ iff $|j| \in A$ and $\lambda_{-j}^+(\varphi) - \lambda_{-j}^-(\varphi) = \lambda_j^+(\varphi) - \lambda_j^-(\varphi) \quad \forall j \ge 1$ (cf. [8]).

We consider Hamiltonian perturbations, $H_{\varepsilon} = H_0 + \varepsilon K$ on $H^N_{\alpha}(S^1, \mathbb{C})$ with the following properties:

- (P1) K is real analytic on some symmetric neighborhood U_{Γ} of $\{(\varphi, \overline{\varphi}), \varphi \in \mathcal{T}_{\Gamma}^{\alpha}\}$ in $(H^N(S^1, \mathbb{C}))^{2}$.
- (P2) $\frac{\partial K}{\partial \varphi}, \frac{\partial K}{\partial \psi}$ are bounded as functions from U_{Γ} into $H^N(S^1, \mathbb{C})$ and verify the normalization condition

$$\sup\left\{||\frac{\partial K}{\partial \varphi}(\varphi,\psi)||_{N}+||\frac{\partial K}{\partial \psi}(\varphi,\psi)||_{N} \mid (\varphi,\psi) \in U_{\Gamma}\right\} \leq 1.$$

(P3) K satisfies the symmetry condition, $((\varphi, \psi) \in U_{\Gamma})$

$$K(\varphi,\psi) = K\left(e^{i\alpha}\check{\varphi}, e^{-i\alpha}\check{\psi}\right).$$

 ${}^{1}U_{\Gamma}$ is said to be symmetric iff $(e^{i\alpha}\check{\varphi}, e^{-i\alpha}\check{\psi}) \in U_{\Gamma}$ for any $(\varphi, \psi) \in U_{\Gamma}$.

Notice that condition (P3) insures that solutions of $\frac{\partial \varphi}{\partial t} = i \frac{\partial H_{\varepsilon}}{\partial \varphi}$ for initial data in $H^N_{\alpha}(S^1, \mathbb{C})$ evolve in the same space $H^N_{\alpha}(S^1, \mathbb{C})$.

Our KAM Theorem states that, for ε small enough, many of the NLS-invariant tori $\mathcal{T}_{I_A}^{\alpha}$ persist under perturbation of the NLS Hamiltonian by εK with K satisfying (P1), (P2), and (P3). Moreover these tori and their linear flows are only slightly perturbed.

Denote by T^n the *n*-dimensional torus $(\mathbb{R}/\mathbb{Z})^n$.

Theorem 2. Let $N \ge 1$, A, Γ , α , U_{Γ} be given as above. Then, for K satisfying (P1), (P2) and (P3), there exists ε_0 so that for any ε with $|\varepsilon| \le \varepsilon_0$ the following statements hold:

- (i) there exists a Cantor set $\Gamma_{\varepsilon} \subset \Gamma$ with meas $(\Gamma \setminus \Gamma_{\varepsilon}) \stackrel{\varepsilon \to 0}{\to} 0$,
- (ii) there exists a Lipschitz family of real analytic torus embeddings

$$\Psi: T^{|A|} \times \Gamma_{\varepsilon} \to U_{\Gamma} \cap \left\{ (\varphi, \overline{\varphi}) | \varphi \in H_{\alpha}^{N} \right\}$$

and

(iii) there exists a Lipschitz map $f: \Gamma_{\varepsilon} \to \mathbb{R}^{|A|}$

such that for $I_A \in \Gamma_{\varepsilon}$ and $\theta_A \in T^{|A|}$, $\Psi(\theta_A + tf(I_A), I_A)$ is a quasiperiodic solution of $\partial_t \varphi = i \frac{\partial H_0}{\partial \overline{\varphi}} + i \varepsilon \frac{\partial K}{\partial \overline{\varphi}}$. Moreover, the deformed invariant tori, $\Psi(T^{|A|} \times \{I_A\})$, are linearly stable.

Remarks:

- 1. Theorem 2 generalizes results due to Kuksin–Pöschel [13] which concern the special case where $\Gamma \subseteq \mathbb{R}^{|A|}_+$ is contained in a sufficiently small neighbourhood of $0 \in \mathbb{R}^{|A|}$ and the phase space consists of elements satisfying generalized Dirichlet boundary conditions. In this situation, action-angle variables are not needed as the Fourier coefficients $(\hat{\varphi}(k))_{k\in\mathbb{Z}}$ are a sufficiently good approximation of the Birkhoff coordinates close to the origin.
- 2. Similarly, the results of [3] and their generalization in [2], while not directly comparable with our Theorem 2, concern only small perturbations of NLS around $\varphi = 0$ as well.
- 3. Our results and methods continue the investigation in [11] on the Korteweg-de Vries equation. The purpose of this paper is to document similar features of the NLS equation.

References

- Bättig D, Bloch A, Guillot J C and Kappeler T, On the Symplectic Structure of the Phase Space for Periodic KdV, Toda and Defocusing NLS, *Duke Math. J.*, 1995, V.79, 549–604.
- [2] Bourgain J, Nonlinear Schrödinger Equations, Preprint, Princeton.
- [3] Craig W and Wayne E, Periodic Solutions of Nonlinear Schrödinger Equations and Nash-Moser Method, Preprint, 1993.
- [4] Faddeev L D and Takhtajan L A, Hamiltonian Methods in the Theory of Solitons, Springer Verlag, 1987.
- [5] Grébert B and Guillot J C, Gaps of one Dimensional Periodic AKNS Systems, Forum Math., 1993, V.5, 459–504.

- [6] Grébert B and Kappeler T, Théorème de Type KAM Pour L'équation de Schrödinger Non Linéaire, C. R. Acad. Sci. Paris, t. 327, Série 1, 1998, 473–478.
- [7] Grébert B and Kappeler T, Birkhoff Coordinates for the Nonlinear Schrödinger Equation (in preparation).
- [8] Grébert B and Kappeler T, Symmetries of the Nonlinear Schrödinger Equation, Preprint.
- [9] Grébert B and Kappeler T, Perturbations of the Defocusing NLS Equation, Preprint.
- [10] Grébert B, Kappeler T and Mityagin B, Gap Estimates of the Spectrum of the Zakharov– Shabat System, Appl. Math. Lett., 1998, V.11, N 4, 95–97.
- [11] Kappeler T and Pöschel J, Perturbations of KdV Equations, Preprint, 1997.
- [12] Kuksin S, Nearly Integrable Infinite-Dimensional Hamiltonian Systems, LNM 1556, Springer, 1993.
- [13] Kuksin S and Pöschel J, Invariant Cantor Manifolds of Quasi-Periodic Oscillations for a Non Linear Schrödinger Equation, Ann. Math., 1996, V.143, 149–179.
- [14] Misyura T V, Properties of the Spectra of Periodic and Antiperiodic Boundary Value Problems Generated by Dirac Operators I, II, *Theor. Funktsii Funksional. Anal. i Prilozhen*, 1978, V.30, 90–101; 1979, V.31, 102–109 (in Russian).
- [15] Pöschel J, A KAM Theorem for Some Nonlinear Partial Differential Equations, Ann. Sc. Norm. Sup. Pisa, 1996, V.23, 119–148.