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Abstract

We study the problem of non-integrability (integrability) of cosmological dynami-
cal systems which are given in the Hamiltonian form with indefinite kinetic energy
form T = 1

2g(v, v), where g is a two-dimensional pseudo-Riemannian metric with a
Lorentzian signature (+,−), and v ∈ TxM is a tangent vector at a point x ∈ M of
the configuration space M.

1 Introduction

The main aim of this paper is to demonstrate how standard methods of investigation
of integrability (non-integrability) work when applied to study systems of cosmological
origin. The example of our discussion is a class of two-dimensional Hamiltonian Friedman–
Robertson–Walker (FRW) models with scalar fields. The paper contains application of
the Ziglin theory and its modification for proving non-integrability of FRW systems.

2 Direct construction of integrable systems.
Integrals linear and quadratic in momenta

For a system with Hamiltonian

H =
1
2

(
p2

x − p2
y

)
+V (x, y) (1)

let us find all potentials which admit a second integral of motion linear in momenta and
having the form

I = A(x, y)px+B(x, y)py. (2)

Note that term of zero order in the momenta have been omitted so that I have a good
time parity. We have

[I,H] = Axp
2
x+(Bx−Ay)pxpy−Byp

2
y−(AVx+BVy) = 0, (3)

where subscripts denote partial derivatives and [·, ·] denote Poisson brackets.
Since equation (3) must hold identically the following relations are fulfilled Ax = 0,

Bx = Ay, By = 0, AVx+BVy = 0. The general solution of the above system is A = αy+γ,
B = αx+ β, where α, β, γ are constants.
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Two cases of different value of α must be considered. First, put α = 0. Then, the last
equation of the above system becomes γVx + βVy = 0 with the solution V = V (βx− γy).
After rotation in hyperbolic space (x, iy) we have x → X = (βx + γy)/

(
β2 − γ2

)
and

y → Y = (γx + βy)/
(
β2 − γ2

)
; the potential becomes V = V (X) and the corresponding

integral is I = pY .
The second case is α �= 0. Without loss of generality we can assume that α = 1 and

then we perform the translation x→ x+β = X, y → y+ γ = Y Equation AVx+BVy = 0
becomes now Y VX +XVY = 0 with the solution V = V

(
X2 − Y 2

)
= V (r), where r is a

radius in two-dimensional Minkowski space with the metric ds2 = dx2 −dy2, x = r coshα,
y = r sinhα.

The corresponding integral is

I = Y Px+XPy = yẋ−xẏ. (4)

We conclude that the planar potentials which admit a second integral of motion, which
is linear in momenta or can be reduced to this form by means of linear point transfor-
mations, depend on one variable or are central potentials in the Minkowski space. The
second integral of motion is the linear or angular momentum, respectively.

Now, the next step is to search for planar potentials V (x, y) which admit an integral
quadratic in momenta

I = Ap2
x+Bpxpy+Cp2

y+D, (5)

where A, B, C, D are functions of x and y. Again the terms, which are linear in momenta,
are omitted in order to I possesses a good time parity.

Darboux [2] obtained a general differential equation for a potential of simple classical
mechanical system admitting an integral of motion I of the form (5).

From condition [H, I] = 0 for Hamiltonian (1) and integral (5) we obtain the following
equations

Ax = 0, Bx−Ay = 0, Cx−By = 0, Cy = 0, (6)

Dx = 2AVx+BVy, Dy = −BVx−2CVy. (7)

The general solution of (6) is

A = +αy2+βy+γ, B = +2αxy+βx+δy+ε, C = +αx2+δx+ξ, (8)

where α, β, γ, δ, ε, ξ are constants while integrability conditions on (7) yield the equation

2(A+C)Vxy+B(Vxx+Vyy)+(2Ay+Bx)Vx+(By+2Cx)Vy = 0 (9)

where A, B, C are given by (8).
Equation (9) can be treated as a counterpart of classical Darboux equation. It is a

necessary and sufficient condition for a potential V (x, y) to admit a second integral of
motion which is quadratic in momenta.

3 Non-integrability of the FRW evolution with scalar fields

In this section we apply Ziglin theory [6, 7] and its extension [3] for proving non-integra-
bility of FRW dynamical system. This approach is attractive because Ziglin’s theory in
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its general formulation is applicable for Hamiltonian systems with a Hamiltonian function
having an arbitrary form. However, for an effective application of this theory one needs
to determine the monodromy group of (normal) variational equations associated with
a particular solution. This can be done only for very special cases, and because of it,
several effective formulations of non-integrability theorems where formulated for systems
with prescribed form of the Hamiltonian (e.g. [4, 5]). In fact these special formulations
consider natural systems with constant positive definite and diagonal form of the kinetic
energy.

3.1 Outline of Ziglin theory

The fundamental papers of Ziglin [6, 7] gave the formulation of a very basic theorem about
non-integrability of analytic Hamiltonian systems. The idea of Ziglin approach lies in
a deep connection between properties of solutions on a complex time plane and the exis-
tence of first integral. This idea takes its origins in works of S W Kovalevskaya and
A M Liapunov.

Here we formulate only the facts needed to state the relevant theorems in fairly simple
settings. We consider C2n as a complex symplectic manifold with the canonical symplectic
structure Ω. A Hamiltonian vector field vH is determined by a complex Hamiltonian
function H : C2n −→ C by relation Ω(vH , ·) = dH. We assume that Hamilton’s analytic
equations

d

dt
z = vH(z), z = (z1, . . . , z2n) ∈ C2n, t ∈ C, (10)

have a non-equilibrium solution z = ϕ(t). To simplify the exposition we assume that this
solution lies in a two dimensional invariant plane

Π = {(z1, . . . , z2n) ∈ C2n | zi = 0, i = 1, . . . , 2(n−1)}.
The phase curve Γ = {ϕ(t) ∈ C2n | t ∈ C} is a Riemannian surface with a local coordi-
nate t. Together with equations (10) we consider also variational equations along solu-
tion ϕ(t)

d

dt
ξ = A(t)ξ, A(t) =

∂vH

∂z
(ϕ(t)). (11)

This system separates into the normal and the tangential subsystems. In our settings this
separation takes a very simple form, as the matrix A(t) has a block diagonal structure.
We consider the normal variational equations (NVE)

d

dt
η = B(t)η, η ∈ C2(n−1), (12)

where B(t) is the 2(n−1)×2(n−1) upper diagonal block of matrix A(t). We choose a point
t0 ∈ C and a matrix of fundamental solutions of NVE X(t), defined in a neighborhood
of t0. With a close path α on complex time plane starting and ending at point t0 we can
associate a matrix S ∈ GL(2(n−1),C) in the following way. We integrate along the path α
NVE (12), i.e., we make an analytic continuation of X(t) along this path. As a result from
the fundamental solution X(t) we obtain another fundamental solution Y (t). From the
general theory of linear systems it follows that Y (t) = SX(t) for some S ∈ GL(2(n−1),C).
Because our system is Hamiltonian, S is a symplectic matrix, i.e, S ∈ Sp(2(n − 1),C).
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In this way, considering all possible paths, we obtain a matrix representation of the first
homotopy group π1(Γ) of Γ. It forms a finitely generated subgroup of Sp(2(n− 1),C) and
it is called the monodromy group. We denote it M .

Let us take an element of monodromy group g ∈M . Its spectrum has the form

spectr(g) =
(
λ1, λ

−1
1 , . . . , λn−1, λ

−1
n−1

)
, λi ∈ C.

The element g is called resonant if

n−1∏
l=1

λkl
l = 1 for some (k1, . . . , kn−1) ∈ Zn−1\{0}.

Theorem 1 [Ziglin, 1982]. Let us assume that there exists a non-resonant element g ∈
M and moreover that in a connected neighbourood of Γ the Hamiltonian system possesses
n − 1 meromorphic first integrals which are functionally independent on H. Under these
hypothesis, if ge = λe for λ ∈ C and e ∈ C2(n−1), then for any element g′ ∈ M it holds
g(g′e) = λ′(g′e) for some λ′ ∈ C.

In the case of a system with two degrees of freedom this theorem can be formulated in
a more operational way

Theorem 2. Let us assume that there exists a non-resonant element g ∈ M . If there
exists some other element g′ ∈M such that

1) Tr g′ �= 0 and gg′ �= g′g, or

2) Tr g′ = 0 and gg′g �= g′,
then there is no additional meromorphic first integral functionally independent on H in a
connected neighborhood of Γ.

The main difficulty with the application of Ziglin theorem is the determination of the
monodromy group of NVE. Only in very special cases we can do this analytically. Yoshida
[4, 5] developed Ziglin approach for special cases when the Hamiltonian of a system has
a natural form and the potential is a homogeneous function. In this case we can find
a particular solution in the form of ‘straight line solution’ and the normal variational
equations for it can be transformed to a product of certain copies of hyper-geometric
equations for which the monodromy group is known. This allows to formulate adequate
theorems in algorithmic form. Below we describe it for an Hamiltonian system with two
degrees of freedom.

Consider the Hamiltonian

H =
1
2

(
p2
1 + p2

2

)
+V (q1, q2), (q1, q2, p1, p2) ∈ C4, (13)

where V (q1, q2) is a homogeneous function of degree k, i.e. V (Cq1, Cq2) = CkV (q1, q2). In
the generic case this system has straight line solutions of the form q1 = C1φ(t), q2 = C2φ(t),
where φ(t) solves the nonlinear equation φ̈ = −φk−1 and (C1, C2) �= (0, 0) are solutions
of the following system C1 = ∂1V (C1, C2), C2 = ∂2V (C1, C2). The variational equations
take the form[

ξ̈
η̈

]
= −

[
V11 V12

V21 V22

] [
ξ
η

]
(φ(t))k−2,
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where Vij = ∂i∂jV (C1, C2) for i, j = 1, 2. Since the Hessian of V is symmetric it is
diagonalizable by an orthogonal transformation and the system separates to

ξ̈ = −λ1φ
k−2(t)ξ, (14)

η̈ = −λ2φ
k−2(t)η, (15)

where λ1, λ2 are the real eigenvalues of the Hessian. Let us note that it is not true for
indefinite systems where the Hessian is not a symmetric matrix.

It can be shown that the Hessian of V at C = (C1, C2) has an eigenvalue λ1 = k − 1.
Thus, its second eigenvalue is equal λ := λ2 = trV (C1, C2) − (k − 1), and it is called
the integrability index. Equation (15) is the normal variational equation. It can be
transformed to the hyper-geometric equation. The monodromy matrices of this equation
are parametrized by λ and the conditions of Ziglin’s theorem put restrictions on the
values of λ: we can identify those values of λ for which our system is not integrable
(more precisely: does not possess an additional meromorphic first integral). To state it
accurately let us define

Ik(p) =
[
k

2
p(p+ 1)− p,

k

2
p(p+ 1) + p+ 1

]
, p ∈ N, (16)

and

Nk = R\
⋃

p∈N

Ik(p). (17)

Then it follows that the Hamiltonian system (13) with a homogeneous potential of degree k
is not integrable if the integrability index λ corresponding to a certain straight line solution
belongs to Nk.

3.2 Application to the FRW Hamiltonian system

Let us consider the flat Friedman–Robertson–Walker system with self-interacting field [1].
After the canonical transformation (p1, q1)→ (ip1,−iq1) the Hamiltonian function has the
form

H =
1
2

(
p2
1 + p2

2

)
+V (q1, q2), V (q1, q2) =

Λ
4
q41−

µ

2
q21q

2
2+

λ

2
q42, (18)

where (Λ, λ, µ) ∈ R4 are parameters of the problem. The equation q = V ′(q), q = (q1, q2)
has the following solutions

z1 =
(
±λ−1/2, 0

)
, z2 =

(
0,±λ−1/2

)
, z3 =

(
±

√
λ+ µ

Λλ− µ2
,±

√
λ+ µ

Λλ− µ2

)
.

The integrability indices for these points are

λi = −trV ′′(zi)−3, i = 1, 2, 3

and

λ1 = −µ
Λ
, λ2 = −µ

λ
, λ3 =

λ1λ2 − 2(λ1 + λ2) + 3
1− λ1λ2

. (19)

Thus, from the Yoshida criterion it follows that if there is l ∈ {1, 2, 3} such that λl ∈ N4

then the FRW system has no additional meromorphic first integral that is functionally
independent with H.
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3.3 Application of the Morales–Ramis theory

Recent results of Morales-Ruiz and Ramis (see [3]), extend the Ziglin theory by connecting
it with the differential Galois theory. Results obtained till now are important from a
theoretical point of view and moreover give very strong tools to study applied problems.

In this approach we restrict ourselves to prove the lack of complete Liouville integrabili-
ty but instead of using the monodromy group we investigate the differential Galois group
of variational equations. Usually Galois group is bigger than the monodromy group and
because of this one can achieve non-integrability results more easily. Lack of space does not
allow us to present the basic idea of this interesting and very effective approach. Here we
mention only the results that one obtains by applying this theory to a case considered
by Yoshida, i.e. a natural Hamiltonian system with a homogeneous potential of degree k.
For such a situation Morales-Ruiz and Ramis proved the following. Let λi be an eigen-
value (different than k − 1) of the Hessian of the potential evaluated at a point which
corresponds to a straight line solution and let k be the degree of homogeneity of the
potential. Then, if the system is integrable (in the Liouville sense) then (λi, k) (for all
straight line solutions) belong to a certain fully described discrete set. For details see
Theorem 5.1 in [3]. This gives a stronger result than the Yoshida criterion because the
Yoshida criterion implies that under the same assumptions λi belongs to set

⋃
p∈N

Ik(p),
but this set has a non-empty interior.

Application of the theorem cited above to the FRW Hamiltonian system gives the
following result. Let us introduce the following three discrete sets

I1 = {p(2p− 1)|p ∈ Z},

I2 =

{
1
8

[
−1 + 16

(
1
3
+ p

)2
]
|p ∈ Z

}
,

I3 =
{
1
2

[
3
4
+ 4p(p− 1)

]
|p ∈ Z

}
.

Then if {λ1, λ2, λ3} �⊂ I = I1 ∪ I2 ∪ I3 the system is non-integrable. Here {λ1, λ2, λ3} are
given by (19).

It is interesting to select those cases when {λ1, λ2, λ3} ⊂ I, i.e. those values of pa-
rameters for which system can be integrable. Note that λ3 is a symmetric function of λ1

and λ2, implying that it is enough to know (λ1, λ2). It is easy to observe that if λ1 = 1 or
λ2 = 1 then λ3 = 1. Assume for example that λ2 = λ3 = 1. Then µ = −λ and λ1 = λ/Λ.
If the system is integrable then 1 and λ/Λ ⊂ I.
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