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Abstract

A dispersionless integrable system with repeated eigenvalues is presented. For N ≥ 3
components the system has no local Hamiltonian structure. Infinitely many simple
compatible non-local Hamiltonian structures are given, using a result of Ferapontov.

1 Introduction

A system of hydrodynamic type is a system of N coupled quasi-linear first-order PDE’s
which may be written in the form

∂q
∂t

=M(q)
∂q
∂x

, (1)

where q =
(
q1(x, t), . . . , qN (x, t)

)T is a vector of functions and M(q) is an N ×N matrix
whose elements are functions of the dependent variables qi. The simplest non-trivial
example (for N = 1) is the inviscid Burgers equation ut = uux. Another simple example
is the continuum Toda equation (see [1] and references therein), ρtt = (eρ)xx, which may
be written as two component system of hydrodynamic type by introducing the variable
u = ∂t

∫
ρdx. Another well-known example of an integrable system of hydrodynamic

type are the Polytropic gas equations [2], which provide one of the clearest illustrations of
both the Dubrovin–Novikov theorem [3] for (local) Hamiltonian structure and Dubrovin’s
subsequent work on Frobenius manifolds [4].
The purpose of this paper is to discuss a particular system of hydrodynamic type which,

for N ≥ 3 components, has no local Hamiltonian structure whatsoever. However, it has
infinitely many simple, compatible non-local Hamiltonian operators, all of which may be
determined by Ferapontov’s theorem [5]: indeed, this system provides an extremely simple
illustration of this elegant theorem.
Consider the system qt =M(q)qx, where M is the matrix

M =




S + q1p−1 q1p−2 · · · q1p−N

q2p−1 S + q2p−2 · · · q2p−N

...
...

. . .
...

qNp−1 qNp−2 · · · S + qNp−N


 , (2)

where S =
N∑

j=1
qjp−j , and p−l = ql or 1. Depending on the choice of p−i, the nonlinearity

is either cubic or quadratic, and so the system may be thought of as either a set of
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dispersionless mKdV equations or as a set of dispersionless KdV equations. This is indeed
so, since the system is a reduction of the dispersionless limit of the third order flow of a
scattering problem associated with complex projective space CP

N — see [7] for details of
the construction, as well as a discussion of the solutions, conservation laws, Lagrangian
formulation and many other aspects of the system. Only the Hamiltonian structure will
be considered in this paper.

2 Diagonalizing the system

Riemann noted that for certain systems of hydrodynamic type it is possible to diago-
nalize the governing matrix M : that is, there exists a set of co-ordinates, the Riemann
invariants ri, which allow the system to be written in the form

ri
t = λiri

x (no sum). (3)

Each λi is an eigenvalue of the matrixM , and is often referred to as a characteristic speed.
Riemann showed that for N = 2, it is always possible to diagonalize the system, but this
is not always true for N ≥ 3. It is a theorem (due to Tsarev [6]) that all diagonalizable
systems of hydrodynamic type are completely integrable Hamiltonian systems.
It is readily found that the eigenvalues of the matrixM are 2S and S, with multiplicity 1

and N − 1 respectively. The existence of a repeated eigenvalue is unusual; indeed, the
author is unaware of any examples in the literature of hydrodynamic systems with repeated
eigenvalues.
A possible set of Riemann invariants corresponding to speeds 2S and S are S and

Rα = qα/q1 respectively. This permits a partial decoupling of the system by writing

St = 2SSx and Rα
t = SRα

x , (4)

where α = 2, . . . N . For notational convenience, Latin indices will now range from 1 to N ,
to denote all co-ordinates, whereas Greek indices will indicate that only N − 1 variables
are being used. The advantage of this co-ordinate system is that is does not distinguish
between dispersionless KdV or dispersionless mKdV systems. The ubiquity of the S is
striking and may be explained by the underlying algebraic structure of the system (see [7]
for details). It should be noted that this variable dominates all aspects of the system, and
so it is natural to seek a Hamiltonian structure with a basis with such a bias.

3 Multi-Hamiltonian structure

This is determined by appealing to the geometry of the dependent variables. In [3],
Dubrovin and Novikov considered operators of the form

Âij = gij(q)
d
dx

− bijk (q)q
k
x. (5)

They showed that this operator is Hamiltonian if g = (gij)−1 defines a non-degenerate
pseudo-Riemannian metric; bijk = −gisΓj

sk, where Γ
j
sk are the coefficients of the Levi–Civita

connection; and the Riemann curvature tensor of g is identically zero.
Ferapontov has studied generalizations of this operator (see [5]) by adding a non-local

“tail” to (5). Explicitly, the Poisson bracket of two functionals F =
∫
f(u, ux, . . .) dx and
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G =
∫
g(u, ux, . . .) dx is given by

{F,G} =
∫

δF

δui
Âij δG

δuj
dx,

where Âij is the operator

Âij = gij d
dx

−gisΓj
sku

k
x−

c∑
α=1

wi
(α)ku

k
xd

−1wj
(α)lu

l
x. (6)

This operator is Hamiltonian if g = (gij)−1 is a pseudo-Riemannian metric; the connec-
tion Γj

sk is symmetric and compatible with the metric; the wα’s are a set of c Weingarten
operators; and the metric and Weingarten maps satisfy the Gauss–Peterson–Codazzi equa-
tions for submanifolds of co-dimension c with a flat normal connection. These are:

gikw
k
(α)j = gjkw

k
(α)i,

∇kw
i
(α)j = ∇jw

i
(α)k,

Rij
kl =

c∑
α=1

{
wi

(α)kw
j
(α)l − wj

(α)kw
i
(α)l

}
,

wαwβ = wβwα.

(7)

What is the metric? Tsarev [6] showed that, in Riemann invariant co-ordinates, the
metric is diagonal and has coefficients gjj given by the equations

1
2
∂

∂ri
log gjj =

1
λi − λj

∂λj

∂ri
(8)

a set of N(N − 1) equations. For system (4), this is potentially problematic, since the
above formula involves a denominator (λi − λj) for eigenvalues λi, λj , where i 	= j, and
(N − 1) of the N eigenvalues are identical. However ∂λα/∂rβ = 0 for all α, β = 2, . . . , N ,
and so an elementary solution of (8) is

g(ϕ) = ϕ(S)dS2+kS2
[(
dR1

)2 + · · ·+ (
dRN−1

)2
]
, (9)

where ϕ(S) is some smooth function and k is some constant. Let
(MN , ϕ(S), k

)
be the

N dimensional manifold with this metric.

• (M2, 1, 1) is the plane R
2 equipped with the polar co-ordinates metric. Since this is a

flat Euclidean space, the Weingarten maps are identically zero and the Hamiltonian
operator becomes local. Remark: This is the only flat manifold within the class
given above, and so the Dubrovin–Novikov theorem will only produce a single (local)
Hamiltonian structure for N = 2 components, and no (local) Hamiltonian structure
for N ≥ 3 components.

• (MN , 1/κ2S2, 1) is a surface of constant curvature κ and so has Weingarten map
wi

j = κδi
j .
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• (MN , ϕ(S), k) may be viewed as a submanifold of co-dimension one with Weingarten
map w = diag{f(S), g(S), . . . , g(S)}. The functions f(S) and g(S) are readily de-
termined from the Gauss–Peterson–Codazzi equations (7): these state that

Sg′(S) = f(S)− g(S),
f(S)g(S) = −ϕ′(S)/2Sϕ(S)2

(
= R1α

1α

)
,

g(S)2 = 1/S2ϕ(S)
(
= Rαβ

αβ , α 	= β, N ≥ 3
)
.

(10)

The solution for f(S) and g(S) is immediate from the last two equations: f(S) =
−ϕ′(S)/2ϕ(S)

√
ϕ(S) and g(S) = 1/S

√
ϕ(S). It is readily verified that these are consis-

tent with the first equation. The Hamiltonian operator is therefore given by:

Âij =




1/ϕ(S) 0 · · · 0

0 1/kS2 · · · 0

...
...

. . .
...

0 0 · · · 1/kS2




d
dx

−




ϕ′(S)Sx/2ϕ(S)2 R1
x/Sϕ(S) · · · RN−1

x /Sϕ(S)

−R1
x/Sϕ(S) Sx/kS

3 · · · 0

...
...

. . .
...

−RN−1
x /Sϕ(S) 0 · · · Sx/kS

3




−




f(S)Sxd−1f(S)Sx f(S)Sxd−1g(S)R1
x · · · f(S)Sxd−1g(S)RN−1

x

g(S)R1
xd

−1f(S)Sx g(S)R1
xd

−1g(S)R1
x · · · g(S)R1

xd
−1g(S)RN−1

x

...
...

. . .
...

g(S)RN−1
x d−1f(S)Sx g(S)RN−1

x d−1g(S)R1
x · · · g(S)RN−1

x d−1g(S)RN−1
x



.

(11)

Hence there exist infinitely many Hamiltonian structures. It now only remains to
show that these are compatible in the sense of Magri’s theorem [8], that is to say, that
{ , }1 + λ{ , }2 is itself a Hamiltonian structure for all values of λ. To do this, consider
the metric

g =
ϕ1(S)ϕ2(S)

ϕ2(S) + λϕ1(S)
dS2+

S2

1 + λ

[(
dR1

)2 + · · ·+ (
dRN−1

)2
]
.

The contravariant form of this metric is clearly gij = gij
(1)+λg

ij
(2), where the metrics g

ij
(α) are

defined in the obvious manner. It may be verified by direct calculation that the connection
for such a metric is consistent with expectation. In order to prove that this metric gives rise
to a Hamiltonian structure equal to { , }1+λ{ , }2 it is necessary to work in co-dimension
two by introducing a pair of Weingarten operators w1 = diag{f1(S), g1(S), . . . , g1(S)} and
w2 = diag

{
λ1/2f2(S), λ1/2g2(S), . . . , λ1/2g2(S)

}
, where fi, gi are defined in an analogue

manner to f , g above. Direct calculation reveals that

R1α
1α = − ϕ′

1(S)
2Sφ1(S)2

− λϕ′
2(S)

2Sϕ2(S)2
, Rαβ

αβ =
1

S2ϕ1(S)
+

λ

S2ϕ2(S)
. (12)
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Hence the curvature part of the Gauss–Peterson–Codazzi equations is satisfied. It is easily
verified that the other equations are satisfied by these Weingarten operators. Hence { , }1+
λ{ , }2 is a Hamiltonian structure (of co-dimension 2) and hence any two Hamiltonian
structures (11) are compatible.
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