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Abstract. We focus on analyzing extreme event on stock market with the pair-copula constructions 
(PCC) based multivariate models with GARCH (p, q) margins. We utilize the PCC model to get the 
estimation of joint PDF parameters. Then, we use six indices construct the decomposition of the 
PCC copula. As for different tail dependence of these log-returns series, we build the estimating 
model with bivariate t-copulas. Finally, we apply Monte Carlo method to simulate the extreme loss 
with parameters estimated from decomposing steps.  

Introduction 

Extreme event happens in finance market and it could generate huge loss to the investors even 
though its frequency is low. In this paper, we focus on the stock market violation and we are 
intending to observe the high dimensional factors’ decomposition so as to analysis the extreme risk 
measure and management of the stock market based on the pair-copula theory. We use the pair-
copula constructions (PCC) to obtain the joint probability distribution based on multivariable data 
series. The appearance of pair-copula theory supplies a kind of way to solve the problem of 
decomposing the high dimensional copula. And Pair-copula well solved the problem of estimating 
the high dimensional copula parameters.  

This paper intends to analysis of extreme event on Chinese stock market. We first introduce the 
relevant theory and methodology, and then give the empirical analysis. Section 2 gives the pair-
copula construction model. Section 3 uses six indices to construct the decomposition of the PCC 
copula and build the estimating model with bivariate t-copulas. Finally, we apply Monte Carlo 
method to simulate the extreme loss with parameters. Section 4 concludes this paper. 

Pair-copula Construction 

1.1. Decomposition of pair-copula for multivariate density functions 

Consider a n-dimensional random variables 1 2( , , )nX X X X=   with a joint density 

function 1 2( , , )nf x x x . The density can be factorized uniquely as  

1 2 1 2 1 3 1 2 1 -1( , , ) ( ) ( | ) ( | , ) ( | , )n n nf x x x f x f x x f x x x f x x x= ⋅ ⋅ ⋅                                           (1) 

We can get the pair-copula decomposition formula: 
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In the next we need to know the exact decomposition step of the copula function , |1, , 1j j i jc + − . 

1. Numerical analysis: an application of PCC to the stock market 

We utilize the above model to the stock market. We consider six time series of daily log-returns 
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of six indices’ prices as follows: industrial index (GY); public utility (GS); finance index (JR); 
Consumer Discretionary (KX); consumer staples index (RX); Information Technology Index (XJ). 
The data’s resource is wind database, and the period is between December 31st, 2009 and 
December 31st, 2011. 

1.1. Estimation of marginal distribution 

We use log-return series of industrial index (GYR); public utility (GSR); finance index (JRR); 
Consumer Discretionary (KXR); consumer staples index (RXR); Information Technology Index 
(XJR), and we take the lowest daily price of each index as the sample of log-returns. Here we apply 
the GARCH (1, 1) –t model to the log-return series and obtain the standardized residuals to describe 
the marginal distribution of return series with conditional heteroscedasticity .  

Table1 gives the parameter estimation of GARCH(1,1)-t for the six log-return series. We could 
see that each parameter pass the test on a high level of significance, and thus each log-return can be 
described by GARCH(1,1)-t. After the estimation of each parameter, we could get the daily log-
return distribution of the six indices. 

Table 1. Parameter estimation of GARCH model 

 Parameter 0 Parameter 
1 

Parameter 
2 

Parameter 
3 

Degree of 
Free 

GY 
(P Value) 

0.020 
(0.017) 

0.093 
(0.021) 

0.046 
(0.029) 

0.920 
(0.000) 

5.338 
(0.000) 

GS 
(P Value) 

0.032 
(0.028) 

0.120 
(0.020) 

0.057 
(0.033) 

0.884 
(0.000) 

4.813 
(0.000) 

JR 
(P Value) 

-0.062 
(0.019) 

0.070 
(0.031) 

0.035 
(0.018) 

0.928 
(0.000) 

3.451 
(0.000) 

KX 
(P Value) 

-0.004 
(0.010) 

0.074 
(0.021) 

0.048 
(0.032) 

0.926 
(0.000) 

6.116 
(0.002) 

RX 
(P Value) 

0.103 
(0.001) 

0.058 
(0.010) 

0.087 
(0.005) 

0.893 
(0.000) 

7.396 
(0.027) 

XJ 
(P Value) 

0.008 
(0.009) 

0.118 
(0.020) 

0.071 
(0.030) 

0.897 
(0.000) 

8.856 
(0.035) 

1.2. Pair-copula decomposition  

We use these standardized residuals generated from GARCH model as the data series so as to 
choose the pair-copula function. Figure 1 is the scatter plots of each pair of marginal distribution 
series. From the figure we could see obvious upper and lower tail dependence.  

Table 2 gives the estimation results and the shadowed cells are the number we choose to get 
the root node. From the table we could see that node JR has the most shadowed cells, hence node 
JR is the root node we seek. 
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Fig. 1. Scatter plots of the unit interval transformed standardized residuals 

Table 2. Estimated degree of free in a bivariate t-copula model 

 GS JR KX RX XJ 
GY 3.373 4.258 2.346 3.530 2.648 
GS  2.316 3.226 3.064 4.395 
JR   2.257 1.825 2.458 
KX    3.905 4.581 
RX     6.482 

 

Table 3. Estimated start and final ML parameters  

Parameters Start Final 
 Correlation Degree of free Correlation Degree of free 

14 0.972 2.352 0.972 2.346 
23 0.800 2.320 0.800 2.316 
34 0.753 2.261 0.752 2.257 
35 0.561 1.825 0.560 1.825 
36 0.616 2.458 0.616 2.458 

24|3 0.803 5.343 0.796 5.372 
25|3 0.674 9.103 0.675 9.103 
26|3 0.790 8.643 0.795 8.640 
13|4 -0.280 10.204 -0.288 10.194 
12|34 -0.271 16.988 -0.269 17.324 
45|23 0.598 8.637 0.597 8.625 
56|23 0.582 16.324 0.581 16.323 

15|234 0.004 24.877 0.004 25.947 
46|235 -0.333 27.761 -0.332 27.760 

16|2345 -0.319 6398385 -0.318 6398370 
MLE 1957.319 1957.438 

Table 3 lists the result of pair-copula’s parameters. We got the initial value and the final value 
during the whole estimation, and we would use the final value together with the parameters of 
marginal distribution to construct the joint probability distribution of the whole market. 

1.3. Monte Carlo simulation result 

Here we set change rate7% as the trigger of extreme event and utilize Monte Carlo method to 
simulate the distribution. According to the result, the probability of downward change rate over 7% 
in the next day is less than 5%, meanwhile, the probability of downward change rate over 8% is less 
than 1%. And we could see these probabilities as the small probability event which means there is 
little chance of breaking out financial crisis or fierce violation of stock market. 
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Conclusion 

This paper presents an analysis of extreme event on stock market with the PCC copula based 
multivariate models with GARCH (p, q) margins.  

The results show that, pair-copula could well describe the dependence structure of different risk 
factors and during the decomposing process, we could adjust the pair-copula function used in 
different tree so as to find the most appropriate structure, this is also the most important reason we 
choose pair-copula model to value the risk factors. PPC model has wider application beyond our 
article, such as insurance portfolio investment and futures market. In this context, we focus on the 
application of forecasting the probability of extreme event occurrence. PPC model provides us a 
more flexible way to measure the composite risk a market faces; moreover, it well presents the 
dependence structure of the risk factors, which is extremely practical because the composite index 
is too composite to observe the interaction of different factors.    
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