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Abstract

In the paper we analyze the Kaldor—Kalecki model of business cycle. The time de-
lay is introduced to the capital accumulation equation according to Kalecki’s idea of
delay in investment processes. The dynamics of this model is represented in terms
of time delay differential equation system. In the special case of small time-to-build
parameter the general dynamics is reduced to two-dimensional autonomous dynami-
cal system. This system is examined in details by methods of qualitative analysis of
differential equations. It is shown that there is a Hopf bifurcation leading to a limit
cycle. Additionally stability of this solution is discussed.

1 Introduction

In this paper we consider a business cycle model and the problem of the investment. As
was pointed out by Ichimura [2] the French physicist Le Corbeiller suggested the possibility
of applying the theory of nonlinear oscillations to study business cycles.

The Kalecki model of business cycle [4] assumes that the saved part of profit is invested
and the capital growth is due to past investment decisions. There is a time lag after which
capital equipment is available for production.

We formulate the Kaldor-Kalecki model of business cycle [6] where Kalecki’s assump-
tion on time lag investment is incorporated into the Kaldor model of business cycle [3].

The equations of the Kaldor—Kalecki model are second order delay differential equa-
tions. Some general techniques of functional analysis and bifurcation theory are relevant
to the study of our dynamical problems. One of the most fundamental tools we have is the
Poincaré—Andronov—Hopf bifurcation theorem which has been generalized for functional
differential equations including delay equations [1]. The power of the Hopf theorem is
that, when its conditions are satisfied, it guarantees both the existence and uniqueness of
periodic trajectories. We use the Hopf theorem and demonstrate that its conditions are
fulfilled in the Kaldor—Kalecki model for a generic class of the parameters. It allows us to
predict the occurrence of limit cycle bifurcation for the time delay parameter.

In the Kaldor—Kalecki model there are two mechanisms leading to cyclic behaviour,
namely nonlinearity of investment function and the time delay in investment. The non-
linear investment function fulfills some conditions proposed by Kaldor [3]. It is assumed
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that investment function I(Y) and saving function S(Y) are increasing functions with
respect to gross product Y. The derivative of investment function with respect to gross
product Iy changes in such a way that Iy < Sy for lower value of product Y, Iy > Sy
for normal value of product Y and again Iy < Sy for higher level of Y. The investment
function is of s-shape.

As was demonstrated in our previous paper [6, 8] the existence of a limit cycle in the
model is independent of the assumption that the investment function is s-shaped. In
the present study we assumes the nonlinear function 7(Y). And in this framework we
consider the case of a small time delay parameter. This approximation can be expressed
by comparing a delay parameter with a natural characteristic parameter (a period of
oscillations) as T/P < 1.

2 The Hopf bifurcation in the Kaldor—Kalecki model
in small time delay approximation

The Kaldor-Kalecki model [6] is based on the Kaldor model [3] and Kalecki’s idea of a
time lag in the capital accumulation equation [4].
The Kaldor—Kalecki model is represented as the time-delay differential equation system

%/ =alI(Y (1), K(t))—S(Y(t), K(1))], (1a)
C;—If _ (Y (t=T), K(t)) = 3K (t), (1b)

where [ is the investment and S is the saving function, Y is gross product, K is capital
stock, « is the adjustment coefficient in the goods market, and § is the depreciation rate
of capital stock. It is assumed that the investment function I is nonlinear (s-shaped)
on Y [3], and the time delay T' = const.

Equations (1) are functional differential equations of retarded type. It means that the
current behaviour of the system depends on its past history.

Let Iy, Ik, Sy and Sk denote derivatives with respect to gross product Y and capi-
tal K. The saving function S depends only on Y and is linear such that Sy =~ € (0,1).
Additionally, we assume that the investment function I(Y, K) = I(Y) + [(K) and Iy > 0.
Moreover I(K) is linear such that Ix = 8 < 0 and then

I(Y,K) = I(Y) + K.

With these assumptions dynamical system (1) has the form

y = % — QI(Y(#) +aBK () —anY (1), (2a)
K= dd_[t( =I(Y({t-T))+(B—6)K(t). (2b)

While the existence of closed orbit via mechanism of the Hopf bifurcation can be rela-
tively easily established in most cases, the distinction between the subcritical and super-
critical Hopf bifurcation is much more difficult. The standard procedure in determining
which case prevails is based on the method of normal form and the theorem on the central
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manifold. The problem is that in the generic case the dynamical systems do not appear
in the normal form and a transformation into normal form is necessary for the stability
analysis.

System (2) has the same critical points as the original one for time delay 7' = 0.
Let (Y*, K*) be critical points for which Y = K = 0. To avoid some obstacles in the
application of the assumptions of some theorems about existence of limit cycles it is useful
to perform a coordinate transformation such that the system is centered at the stationary
equilibrium (Y*, K*). Let y =Y -Y* k=K —-K*, i =1—I" and s = §— S*. System (2)
then turns into

y = afi(y(t)) +Bk(t) —yy(t)], (3a)

ke =i(y(t—T))+(B—0)k. (3b)
As the time delay parameter T is small (if comparing with the characteristic period
of oscillation), i(y(t — T')) can be derived in this approximation from a linear Taylor
expansion, i.e.
i(y(t =T)) =i(y = Ty) = i(y) — Tiyy
i(y) — aTiyli(y () + BE(t) — yy(D)]-

Therefore in this approximation system (3) is reduced to the form of 2-dimensional
autonomous dynamical system

y(t) = ali(y) =y + Bk, (4a)

k(t) = i(y) =Ty (0)[i(y (1) +Bk(t) =y (8)]+(B—0)k. (4b)
The Jacobian of (4) at critical points is

S a(iy(0) =) af (5)

iy(0) — aT'iy (0)(iy(0) =) (8 —0) — BTy (0)

with the determinant

det J = a(8—06)(iy(0) =) — iy (0) —u(iy (0) =7) T (5 —1y (0))

and the trace

trJ = a(iy(0)—7) + (8- 8) — aBTi, (0).

Therefore the characteristic equation is A?> — trJA + detJ = 0 and the equilibrium
is locally stable if and only if the real parts of eigenvalues \ are negative. Then the
equilibria are asymptotically stable if a(iy(0) —v) + (8 — ) — afTi,(0) < 0. According
to the Hopf bifurcation theorem a single bifurcation occurs if the complex conjugate roots
cross the imaginary axis. Apparently, the roots are complex conjugate with zero real parts
if trJ = 0. As there are no other roots in this 2-dimensional system the consideration of
the existence of closed orbits is complete if the eigenvalues cross an imaginary axis with
nonzero speed at the bifurcation point.
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If i, — s, > 0 at a stationary equilibrium (Kaldor explicitly assumed that this condition
is satisfied) there exists a value T = Ty, for which a(iy, — sy) + i — 0 — afT}iriy = 0 and
the complex conjugate roots cross the imaginary axis transversally. As for T' > Ty the
real parts are becoming positive, Ti;r is indeed a bifurcation value of the Kaldor—Kalecki
model, where

a(iy(0) —y)+6—-9
af3iy(0)

where it is assumed that a(i,(0) —~v) + 3 — ¢ > 0 because Ty > 0. Let us note that
existence of positive value of time parameter T}y means that the corresponding Chang—
Smith condition of asymptotic stability is not fulfilled, while 7,(0) > 0. This confirms that
that the stability analysis for small 7" is true (it is not true in general that stability for
small T" holds).

The centered dynamical system (4) evaluated at the bifurcation point reads

(1)=7(1)+atm, (©

where

Thif = > 0,

a(iy(0) =) a8
= a(iy(0) — - iy (0) — _
iy (0) — (i, (0) — 7) X ®) g)w 6 45_g_ liy(®) g)w 5

As we assumed that i(y) is the only term involving nonlinearity, the nonlinear part
9(y, k) reduces to

g

g'(y, k) = ai(y) —a(iy(0) =), (7a)

2y, k) = i(y) — aThiiy (0)[i(y) + Bk — vyl
— [iy(0) — aThigiy (0)(iy (0) — ¥)]y + BThiriy (0)k.

In order to carry out the necessary coordinate transformation for the reduced dynamical
system to the normal form [5, 7], let us consider the (2 x 2)-matrix

(7b)

= ( air a2 > -
as  aa
and let
\/—%(fn — f22)* = frafo1 Fi1 — fon
anp =0, aiz =1, ag = , Qg = — "
fi2 2f12

where f;; are the entries in Jacobian (5) evaluated at the bifurcation point.
Therefore the inverse matrix of (8) is

_ 1 —an2 -1 )
A= — 9
as < —az1 0 ©)
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and the matrix A can be used to write the linear part of the system in off-diagonal form,
i.e. in the new coordinates we obtain

()= ()= (Ll 2 ) (2),

where a9 fi2 = /—aBy — aB(iy(0) — ) and

a(iy(0) — ) af
130~ 40— 014 +1] $60- " a0 )

Finally we obtain the transformation to the normal coordinates in the form
y=v, k = az1u+axv

and in these coordinates the nonlinear terms of the dynamical system takes the form

gl(uv U) _ L ago 1 > gl(y(u¢v)ak(uv U))
) ) am \an 0 )\ g2yt v) k(u,0) |
Let us note that as f12 = y/det[A~1JA] = w assumes a very simple form if a constant
of depreciation vanishes, namely

a1 fi2 = v —afy = a1 = %ﬁf

The stability properties of the limit cycles depend on the nonlinear terms g(y, k) be-
cause in the Hopf bifurcation the real parts of eigenvalues of the Jacobi matrix J, in the
linear approximation, vanish. It can be shown that the stability of the cycle depends on
derivatives up to third-order of the nonlinear function g. Consider the expression V"' (Ty;¢)

1

b= 16 (galcw:c + giyy + gz?yy)

1
+ 6o 90y (G2 + 9py) — 92y (922 + Goy) — Y2uTow + TyyTay]

and
9" (u,v) = ai(v) = L'(v),
% (u,v) = i(v) — aThitiy]i(v) — yv + B(agiu + azv) — L2(u, v),

where Li(u,v), i = 1,2, denotes the linear parts of the system.
Now we obtain the final formula for the stability parameter in the form

V"0, Thi) = ivow(0) — 3aThitivwn (0)[2(iy(0) =y +iy(0)],

where we assume that at the inflection point 7,,(0) = 0.

Therefore emerging cycle is attracting if V" (0, Thir) < 0, i.e. iypy(0) < 0 like in the
classical Kaldor model, because the contribution comes from the existence of time-to-build
are second order if « is small (it is significant if « is large) and then the corresponding
terms produce positive contribution.
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Let us note that interpretation of sufficient conditions for the presence of a stable limit
cycle is very simple. Namely if (i) the investment function is increasing with respect
to its argument at the equilibrium point 4, (0) > 0; and (ii) the investment function
changes second derivatives from positive sign to negative; then the third derivative of the
investment function in the equilibrium point is negative.

It is interesting to observe that if the following Kaldor assumptions are satisfied

(i) Iy > Sy for normal levels of income;

(ii) Iy < Sy for high or low levels of income;

(iii) the stationary state equilibrium has a normal level of income, then the corresponding

values of Ty always exist because there is a pair of conjugate imaginary values
A=o0 tiw, ie. if

302(iy (0) —7)* — a3 [%iy(()) + 7] >0

(for § = 0 such values always exist), and moreover if

Oo otrA

67|T:Tbif = 87T‘T:Tbif = —Ozﬁiy(()) >0

i.e. the transversality condition is satisfied at a bifurcation point then T = Ty is
indeed a bifurcation value of the model. As T > Ty the real parts are becoming
positive.
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